Sheaves for Children

Eduardo Ochs

Departmento de Física e Matemática Pólo Universitário de Rio das Ostras UFF

http://angg.twu.net/math-b.html#sfc
http://angg.twu.net/ferramentas-para-ativistas.html

(Version: 2014may19)

IFCS 2014may19

Where sheaves stand

 Category Theory
 |

 I
 I

 I
 I

 I
 Topos Theory

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

 I
 I

Cartesian Closed Categories, Lambda-Calculus, Intuitionistic Logic

Modal Logic (S4)

Topology

Algebraic Geometry

CT: Why?

Category Theory is fascinating (for some people!), but (usually) too abstract...

The right level of abstraction makes lots of proofs *almost* automatic: *proving* something in CT means *constructing* something (CT is constructive!), and all "natural" constructions are equivalent ("coherence").

More or less like this:

Let A and B be (arbitrary) sets. Then there is an "obvious" function flip : $A \times B \rightarrow B \times A$.

This *ought* to make some parts of CT *easy*!!!

(Long story... see "Internal Diagrams and Archetypal Reasoning in Category Theory")

Why study CT now?

Public education in Brazil is being dismantled maybe we should be doing better things than studying very technical & inaccessible subjects with no research grants -

Category theory should be more accessible

Most texts about CT are for specialists in research universities... Category theory should be more accessible.

To whom?...

- Non-specialists (in research universities)
- Grad students (in research universities)
- Undergrads (in research universities)
- Non-specialists (in conferences where we have to be quick)
- Undergrads (e.g., in CompSci in teaching colleges) ("Children")

ZSets

Take a finite, non-empty subset of \mathbb{N}^2 ;

translate it lowerleftwards as most as possible in \mathbb{N}^2 , until you get something that touches both axes.

Subsets of \mathbb{N}^2 obtained in this way are said to be "well-positioned", and we call them *ZSets*.

We can use a positional notation with bullets to denote our favourite ZSets (unambiguously!)...

V	Vee	••	$\{(0,1), (2,1), (1,0)\}$
	Kite		$\{(1,3), (0,2), (2,2), (1,1), (1,0)\}$
Н	House	•	$\{(1,2),(0,2),(2,2),(0,1),(2,1)\}$

↑ Some of my favorite ZSets note that they have both short, one-letter names and long, pronounceable names.

ZDAGs

An arrow between points of \mathbb{N}^2 that goes one unit down and 0/1/-1 units horizontally is called a *black pawn's move*.

Take a ZSet, *D*, and draw all possible black pawns moves between its points; this gives us a set of arrows, BPM(*D*), that turns *D*, a ZSet, into a directed, acyclical, graph, \mathbb{D} , in a canonical way: $\mathbb{D} = (D, \text{BPM}(D))$.

Note the change of font!!!: $D \dashrightarrow \mathbb{D}$

Example:

$$K = \begin{array}{c} (1,3) \\ (0,2) \\ (2,2) \\ (0,0) \end{array} \\ \mathbb{K} = \begin{array}{c} (1,3) \\ (0,2)$$

Truth-values

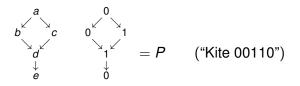
A function from a ZSet *D* to $\{0, 1\}$ is a *modal truth-value*.

The positional notation gives us a way to write modal truth-values very compactly, and the points on a ZSet have a natural order - the "reading order", in which we read them line by line, left to right in each line.

This gives us a way to *read aloud* modal truth-values - and to list all modal truth-values in order.

Notation: $\mathcal{P}(\mathbb{D})$ is the set of modal truth-values on \mathbb{D} We use " $\mathcal{P}(\mathbb{D})$ " because $\begin{array}{c} 0^{0}_{1} \\ 0 \end{array}$ "is" $\{c, d\} \ (\subset K)$

Intuitionistic truth-values



Now consider that each 1 in P is covered with (wet) black paint. Then P ("Kite 00110") is not *stable*, because the paint of the 1 in position d will flow down into the 0 of position e, and paint it black.

Stable modal truth-values are called *intuitionistic truth-values*.

Notation: $\downarrow P$ is *P* after letting the black paint flow down. Example: $\downarrow_{1}^{0} = 0^{1}_{1}$

The order topology

$$\downarrow^{01}_{0} = {}^{01}_{1}$$

Notation: $\mathcal{P}(\mathbb{D})$ is the set of modal truth-values on \mathbb{D} Notation: $\mathcal{O}(\mathbb{D})$ is the set of intuitionistic truth-values on \mathbb{D}

$$\downarrow : \mathcal{P}(\mathbb{D})
ightarrow \mathcal{O}(\mathbb{D})$$

The topology $\mathcal{O}(\mathbb{D})$ is the *order topology* an arrow $\alpha \to \beta$ in \mathbb{D} means that if an open set contains α it has to contain β too.

(Order topologies are Alexandroff.)

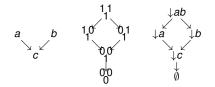
Priming

Amazing fact: very often $\mathcal{O}(\mathbb{D})$ can be represented as a ZDAG too! $\mathcal{O}(\mathbb{D})$ has a natural order:

$$P \rightarrow Q$$
 means $P \leq Q, P \subseteq Q, P \vdash Q$,

and $\top = {}^{1}_{1}{}^{1}$ ("Top") is the terminal of the category...

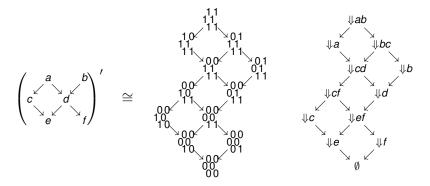
But if we draw $\mathcal{O}(\mathbb{D})^{op}$ instead of $\mathcal{O}(\mathbb{D})$ we can see clearly how $\mathbb{D} \hookrightarrow \mathcal{O}(\mathbb{D})^{op}$:



Note that $\downarrow ab = \downarrow \{a, b\} = \downarrow_0^{1} = {}^{1}_{1}^{1}$. Def: $\mathbb{D}' = \mathcal{O}(\mathbb{D})^{\text{op}}$. $\mathbb{V}' \cong \mathbb{K}$ - and, by abuse of language, $\mathbb{V}' = \mathbb{K}$.

Unpriming

If $\mathbb{C}' = \mathbb{D}$ can we recover \mathbb{C} from \mathbb{D} ? Better: if \mathbb{D} is a ZDAG that is a Heyting algebra can we find a $\mathbb{C} \subset \mathbb{D}$ such that $\mathbb{C}' = \mathbb{D}$? Can we use that to determine quickly whether an arbitrary \mathbb{D} is a Heyting algebra? Yes, yes, & yes!



Priming: theorems

We say that \mathbb{D} is *3-thin* when ••• $\not\subset \mathbb{D}$.

We say that \mathbb{D} is *square-thin* when $\stackrel{\bullet}{\bullet} \not\subset \mathbb{D}$. We say that \mathbb{D} is *thin* when it is both 3-thin and square-thin. Fact: if \mathbb{D} is 3-thin then \mathbb{D}' is a ZDAG. Fact: if \mathbb{D} is thin then \mathbb{D}' is a thin ZDAG.

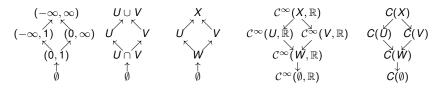
Fact: every topology - whether planar or not - is a Heyting algebra - i.e., we can interpret $T, F, \land, \lor, \rightarrow, \neg$ on it, and every \mathbb{D}' is a topology...

Priming gives us LOTS of Heyting algebras, and lots of *planar* Heyting algebras!

Topological sheaves are defined on diagrams like $\mathbb{D} \hookrightarrow \mathbb{D}' \hookrightarrow \mathbb{D}''$.

Glueing locally-defined functions

Let U be $(-\infty, 1)$ and V be $(0, \infty)$... Consider these open sets in \mathbb{R} ,



and the sheaf *C* of C^{∞} functions from them to \mathbb{R} .

Upward arrows are *inclusions* (of an open set into another). Downward arrows are *restrictions* (of domains).

Two functions f_U and f_V are *compatible* if their restrictions to $U \cap V$ coincide.

Each compatible family $\{f_U, f_V\}$ in *C* has a unique glueing f_X . Generalize that, and you get the definition of *sheafness*.

Sheafness

A compatible family $\{f_U, f_V\}$ is defined on $\{U, V\} = \frac{1}{8}^{U}$, and it can be extended, using the restriction maps $\rho_{UW} : FU \to FW$ etc,

to a downward-closed compatible family $\{f_U, f_V, f_W, f_{\emptyset}\}$, defined on $\{U, V, W, \emptyset\} = \frac{1}{1}^{0} \dots$

The "unique glueing" f_X of $\{f_U, f_V\}$ can be extended to a downward-closed compatible family $\{f_X, f_U, f_V, f_W, f_{\emptyset}\}$, defined on $\{X, U, V, W, \emptyset\} = \frac{1}{1}^{1}$.

The restriction

$$\{f_X, f_U, f_V, f_W, f_\emptyset\} \stackrel{\rho}{\mapsto} \{f_U, f_V, f_W, f_\emptyset\}$$

is trivial to define - sheafness means that maps like these are bijections.

Topological sheafness

A closure operator:

$$\sqcup \{ U, V, W, \emptyset \} = \{ X, U, V, W, \emptyset \}$$

it takes the union $U \cup V \cup W \cup \emptyset = X$ and then all subsets of that. It acts on \mathbb{V}'' : $\Box : \bullet \bullet'' \to \bullet \bullet''$

$$\Box_{1}^{0} = 1^{1}_{1}$$

Which elements of \mathbb{V}'' are stable by \sqcup ? Only $\downarrow \{U, V\} \mapsto \downarrow \{X\} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\emptyset \mapsto \{\emptyset\} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ are *not* stable by \sqcup .

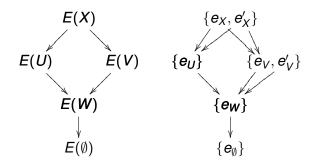
The stable elements of \mathbb{V}'' are these: $\frac{1}{1}^{0}$.

These diagrams of stable elements are what we need to define sheaves "in general".

Eduardo Ochs (PURO/UFF)

The evil presheaf

A presheaf F in $\mathbf{Set}^{\mathcal{O}(\mathbb{V})^{\mathsf{op}}}$ is simply a functor $F : \mathcal{O}(\mathbb{V})^{\mathsf{op}} \to \mathbf{Set}$.



The evil presheaf $E : \mathcal{O}(\mathbb{V})^{op} \to \mathbf{Set}$, above, fails to be in a sheaf in two ways: the compatible family $\{e_U, e_V\}$ has two different glueings, the compatible family $\{e_U, e_V\}$ doesn't have a glueing.

Dual operations

Due to we being in a finite / planar / etc case, several interesting operations have duals (adjoints):

- In finite DAGs the transitive-reflexive closure (A, R)→(A, R*) has an adjoint that keeps only the "essential arrows" of the graph;
- The "let the paint flow down" operation $\downarrow_1^{0} = 0^{1}_1$
 - has an adjoint ${}^{0}_{1} \mapsto {}^{0}_{8}$ that returns the "generators" of an open set;
- Each closure operator like *U* → ⊔ *U* has an adjoint that returns the smallest equivalent cover...

Where are the theorems? Not here! Why???

Because this is "for children" -

we are focusing on the tools to let people check particular cases... and this *complements* [Bell 1988] and my IDARCT paper, that explains how to do theorems and archetypal cases in parallel

Slightly more advanced things:

- CCCs and Heyting Algebras; $(\land Q) \dashv (Q \rightarrow)$
- presheaves of the form **Set**^D as toposes
- the classifier object of a **Set**^{\mathbb{D}}
- \blacksquare other modalities (besides $\sqcup)$ in a $\textbf{Set}^{\mathbb{D}}$
- all logical properties of modalities follow from three axioms
- operations on the lattice of modalities
- forcing
- sheafification
- geometric morphisms between toposes I need help here =(

ZHAs

A *ZHA* is a ZSet that is a Heyting Algebra i.e., one whose points are intuitionistic truth-values, and where we have the logical operations \land , \lor , \rightarrow , etc defined on them, obeying the right equations...

...but this is how we want to *use* ZHAs. Let's see a *visual* characterization of ZHAs.

(See the handouts)

ZHAs: definition

Def: a ZSet *D* is a ZHA iff it obeys these five conditions:

 ZHA_1 The non-empty lines of D are sequential ZHA_2 D has one top element and one bottom element ZHA_{3L} The left wall of D can be traversed by black pawns moves ZHA_{3R} The right wall of D can be traversed by black pawns moves ZHA_4 Each line of D is made of consecutive same-parity points ZHA_5 All points in each wide region of D have the same parity

(The bottlenecks of *D* divide it into regions with a top element and a bottom element. A region whose lines are a bottleneck, one or more non-bottlenecks, and another bottleneck is a "wide region").

(If these look like six conditions, let ZHA_3 be "both the left wall and the right wall of *D* can be traversed by black pawns moves")

Definitions for ZHAs

height is the y coordinate of the uppermost points of D. Line D(y)is all points of D whose y coordinate is the given y. Lines is the set of all ys such that $Line_D(y)$ is non-empty. $L_D(y)$ is the x coordinate of the leftmost point in Line p(y). $R_D(y)$ is the x coordinate of the rightmost point in Line p(y). $W_D(y)$ is $R_D(\gamma) - L_D(\gamma)$. is the set of all vs such that Lines D(v) has exactly one Bn point; these points are the bottlenecks of D. LWD is the left wall - the set of points of the form $(y, L_D(y))$ is the right wall - the set of points of the form $(y, R_D(y))$ RWD D^{-} is the set of generators of D - formally, the points $(x, y) \in D$ such that exactly one of the points (x-1, y-1), (x, y-1), (x+1, y-1) belongs to D.

 $\label{eq:LD} \begin{array}{l} \mathsf{L}_D,\mathsf{R}_D,\mathsf{W}_D:\mathsf{Lines}_D\to\mathbb{N}.\\ \text{``Lines'' here are horizontal lines in }\mathbb{N}^2. \end{array}$

Definitions for ZHAs (2)

The line *y* is a bottleneck (of *D*) when $\text{Lines}_D(y)$ has exactly one point The line *y* is a wide when $\text{Lines}_D(y)$ has more than one point

B _D	is the set of the (y coordinates of) bottlenecks of D.
CB _D	is the set of (y coords of pairs of)
	consecutive bottlenecks of D
	Formally: $(y_0, y_1) \in CB_D$ iff $([y_0, y_1] \cap B_D) = \{y_0, y_1\}$
CCB _D	is the of close consecutive bottlenecks of D
	Formally: $(y_0, y_1) \in CCB_D$ iff
	$(y_0, y_1) \in CB_D$ and $y_1 - y_0 = 1$
DCB _D	is the of distant consecutive bottlenecks of D
	Formally: $(y_0, y_1) \in CCB_D$ iff
	$(y_0, y_1) \in CB_D$ and $y_1 - y_0 \ge 2$
$\operatorname{Reg}_{D}(y0, y1)$	is the region of all points $(x, y) \in D$ with $y_0 \le y \le y_1$.
WideRegs _D	is the set of all wide regions of D
	Formally: WideRegs _D = $\text{Reg}_D(\text{DCB}_D)$

ZHAs: definition (again, but this time formally)

Def: a ZSet *D* is a ZHA iff it obeys these conditions:

- ZHA₁ The non-empty lines of *D* are sequential Formally: Lines_{*D*} = $\{0, 1, ..., height_D\}$
- ZHA₂ *D* has one top element and one bottom element Formally: $\{0, height_D\} \subset B_D$
- ZHA_{3L} The left wall of *D* can be traversed by black pawns moves Formally: $L_D(y + 1) - L_D(y) \in \{-1, 0, 1\}$ whenever defined
- ZHA_{3*R*} The right wall of *D* can be traversed by black pawns moves Formally: $R_D(y+1) - R_D(y) \in \{-1, 0, 1\}$ whenever defined
- ZHA₄ Each line of *D* is made of consecutive same-parity points Formally: $Line_D(y) =$

$$\{(a = L_D(y), y), (a + 2, y), (a + 4, y), ..., (R_D(y), y)\}$$

ZHA₅ All points in each wide region of *D* have the same parity

D^- as a DAG (not necessarily a ZDAG)

For each ZDAG D its subset of generators, D^- (the points of D with exactly one black pawn move going out) has a natural partial order in it, obtained by restricting the partial order in D...

 $(D, \mathsf{BPM}^*(D) \mapsto (D^-, \mathsf{BPM}(D)^* \cap (D^- \times D^-))$

When *D* is a ZHA this order on D^- is generated by a set of arrows that is very easy to draw -

draw an arrow from each point of the left wall to the next one, draw an arrow from each point of the right wall to the next one, draw inter-wall arrows (which will always be 45°) like this:

[See the handouts]

D^- as generators

This gives us a notion of stable subsets of D^- , and thus a topology on D^- . $(D^-, \mathcal{O}(D^-))$ is a topological space, which lets us construct $(D^-)'$...

```
When D is a ZHA we have (D^-)' \cong D.
How?
```

We have

a natural function from D^- to D, a natural function from $\mathcal{O}(D^-)$ to D, a natural function from D to $\mathcal{O}(D^-)$,

[See the handouts]

ZHAs are sets of truth-values

Theorem 1: every ZHA *D* is isomorphic to $\mathcal{O}(D^-)$. Theorem 2: every ZHA *D* is a Heyting Algebra. Theorem 3: a ZSet *D* is a Heyting Algebra iff it is isomorphic to $\mathcal{O}(D^-)$. Theorem 4: a ZSet *D* is a Heyting Algebra iff it is a ZHA "with some (or no) corners tucked in".

[To do: describe the iso in theorem 1]

For Further Reading I

J.L. Bell.

Toposes and Local Set Theories. Oxford, 1988 (re-ed: Dover, 2007).

E. Ochs.

Internal Diagrams and Archetypal Reasoning in Category Theory Logica Universalis, 2013

http://angg.twu.net/math-b.html.