Sheaves for Children

Eduardo Ochs

Departmento de Física e Matemática Pólo Universitário de Rio das Ostras UFF

```
http://angg.twu.net/math-b.html
http://angg.twu.net/ferramentas-para-ativistas.html
```

(Version: 2014apr09)

EBL 2014

Where sheaves stand

Cartesian Closed Categories, Lambda-Calculus, Intuitionistic Logic

Modal Logic (S4)

Algebraic Geometry

Topology

CT: Why?

Category Theory is fascinating (for some people!), but (usually) too abstract...

The right level of abstraction makes lots of proofs *almost* automatic: *proving* something in CT means *constructing* something (CT is constructive!), and all "natural" constructions are equivalent ("coherence").

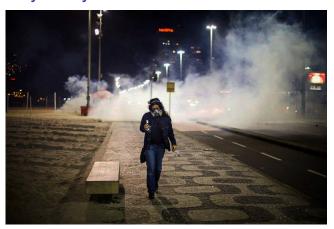
More or less like this:

Let A and B be (arbitrary) sets. Then there is an "obvious" function flip : $A \times B \rightarrow B \times A$.

This ought to make some parts of CT easy!!!

(Long story... see "Internal Diagrams and Archetypal Reasoning in Category Theory")

Why study CT now?



Public education in Brazil is being dismantled maybe we should be doing better things than studying very technical & inaccessible subjects with no research grants -

Category theory should be more accessible

Most texts about CT are for specialists in research universities... *Category theory should be more accessible.*

To whom?...

- Non-specialists (in research universities)
- Grad students (in research universities)
- Undergrads (in research universities)
- Non-specialists (in conferences where we have to be quick)
- Undergrads (e.g., in CompSci in teaching colleges) ("Children")

ZSets

Take a finite, non-empty subset of \mathbb{N}^2 ; translate it lowerleftwards as most as possible in \mathbb{N}^2 , until you get something that touches both axes.

Subsets of \mathbb{N}^2 obtained in this way are said to be "well-positioned", and we call them ZSets.

We can use a positional notation with bullets to denote our favourite ZSets (unambiguously!)...

V	Vee	••	$\{(0,1), (2,1), (1,0)\}$
K	Kite	•••	$\{(1,3), (0,2), (2,2), (1,1), (1,0)\}$
Н	House		$\{(1,2), (0,2), (2,2), (0,1), (2,1)\}$

↑ Some of my favorite ZSets - note that they have both short, one-letter names and long, pronounceable names.

ZDAGs

An arrow between points of \mathbb{N}^2 that goes one unit down and 0/1/-1 units horizontally is called a *black pawn's move*.

Take a ZSet, D, and draw all possible black pawns moves between its points; this gives us a set of arrows, BPM(D), that turns D, a ZSet, into a directed, acyclical, graph, \mathbb{D} , in a canonical way: $\mathbb{D} = (D, \mathsf{BPM}(D))$.

Note the change of font!!!: $D \longrightarrow \mathbb{D}$

Example:

$$K = {\begin{tabular}{c} (1,3) \\ (0,2) & (2,2) \\ (0,1) & (0,0) \end{tabular}} \mathbb{K} = {\begin{tabular}{c} (1,3) \\ (0,2) & (2,2) \\ (0,1) & (0,0) \end{tabular}}$$

Truth-values

A function from a ZSet D to $\{0,1\}$ is a *modal truth-value*.

The positional notation gives us a way to write modal truth-values very compactly, and the points on a ZSet have a natural order - the "reading order", in which we read them line by line, left to right in each line.

This gives us a way to *read aloud* modal truth-values - and to list all modal truth-values in order.

Notation: $\mathcal{P}(\mathbb{D})$ is the set of modal truth-values on \mathbb{D}

We use " $\mathcal{P}(\mathbb{D})$ " because $^{01}_{01}$ "is" $\{c,d\}\ (\subset K)$

Intuitionistic truth-values

$$b \xrightarrow{c} c \qquad 0 \xrightarrow{1} 1$$

$$c \qquad 0 \xrightarrow{1} = P \qquad \text{("Kite 00110")}$$

Now consider that each 1 in P is covered with (wet) black paint. Then P ("Kite 00110") is not *stable*, because the paint of the 1 in position d will flow down into the 0 of position e, and paint it black.

Stable modal truth-values are called intuitionistic truth-values.

Notation: $\downarrow P$ is P after letting the black paint flow down.

Example:
$$\downarrow_{0}^{01} = \frac{0}{1}$$

The order topology

$$\downarrow_0^{01} = 011$$

Notation: $\mathcal{P}(\mathbb{D})$ is the set of modal truth-values on \mathbb{D}

Notation: $\mathcal{O}(\mathbb{D})$ is the set of intuitionistic truth-values on \mathbb{D}

$$\downarrow : \mathcal{P}(\mathbb{D}) \to \mathcal{O}(\mathbb{D})$$

The topology $\mathcal{O}(\mathbb{D})$ is the *order topology* - an arrow $\alpha \to \beta$ in \mathbb{D} means that if an open set contains α it has to contain β too.

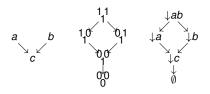
(Order topologies are Alexandroff.)

Priming

Amazing fact: very often $\mathcal{O}(\mathbb{D})$ can be represented as a ZDAG too! $\mathcal{O}(\mathbb{D})$ has a natural order:

 $P \xrightarrow{} Q$ means $P \leq Q$, $P \subseteq Q$, $P \vdash Q$, and $\top = {}^{1}_{1}{}^{1}$ ("Top") is the terminal of the category...

But if we draw $\mathcal{O}(\mathbb{D})^{op}$ instead of $\mathcal{O}(\mathbb{D})$ we can see clearly how $\mathbb{D} \hookrightarrow \mathcal{O}(\mathbb{D})^{op}$:



Note that $\downarrow ab = \downarrow \{a, b\} = \downarrow_0^{1,1} = 1^1_1$.

Def: $\mathbb{D}' = \mathcal{O}(\mathbb{D})^{op}$.

 $\mathbb{V}'\cong\mathbb{K}$ - and, by abuse of language, $\mathbb{V}'=\mathbb{K}$.

Unpriming

If $\mathbb{C}'=\mathbb{D}$ can we recover \mathbb{C} from \mathbb{D} ? Better: if \mathbb{D} is a ZDAG that is a Heyting algebra can we find a $\mathbb{C}\subset\mathbb{D}$ such that $\mathbb{C}'=\mathbb{D}$? Can we use that to determine quickly whether an arbitrary \mathbb{D} is a Heyting algebra? Yes, yes, & yes!

$$\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}' \qquad \cong \qquad \begin{pmatrix} 111 & 01 & 111 &$$

Priming: theorems

We say that \mathbb{D} is *3-thin* when ••• $\not\subset \mathbb{D}$.

We say that $\mathbb D$ is *square-thin* when $\clubsuit \not\subset \mathbb D$.

We say that $\mathbb D$ is *thin* when it is both 3-thin and square-thin.

Fact: if \mathbb{D} is 3-thin then \mathbb{D}' is a ZDAG.

Fact: if \mathbb{D} is thin then \mathbb{D}' is a thin ZDAG.

Fact: every topology - whether planar or not - is a Heyting algebra - i.e., we can interpret T, F, \wedge , \vee , \rightarrow , \neg on it, and every \mathbb{D}' is a topology...

Priming gives us LOTS of Heyting algebras, and lots of *planar* Heyting algebras!

Topological sheaves are defined on diagrams like $\mathbb{D} \hookrightarrow \mathbb{D}' \hookrightarrow \mathbb{D}''$.

Glueing locally-defined functions

Let U be $(-\infty, 1)$ and V be $(0, \infty)$... Consider these open sets in \mathbb{R} ,

$$(-\infty,\infty) \qquad U \cup V \qquad X \qquad C^{\infty}(X,\mathbb{R}) \qquad C(X)$$

$$(-\infty,1) \qquad (0,\infty) \qquad U \qquad V \qquad V \qquad C^{\infty}(U,\mathbb{R}) \qquad C^{\infty}(V,\mathbb{R}) \qquad C(U) \qquad C(V)$$

$$(0,1) \qquad U \cap V \qquad W \qquad C^{\infty}(W,\mathbb{R}) \qquad C(W)$$

$$\emptyset \qquad \emptyset \qquad \emptyset \qquad C^{\infty}(W,\mathbb{R}) \qquad C(W)$$

and the sheaf C of C^{∞} functions from them to \mathbb{R} .

Upward arrows are *inclusions* (of an open set into another). Downward arrows are *restrictions* (of domains).

Two functions f_U and f_V are *compatible* if their restrictions to $U \cap V$ coincide.

Each compatible family $\{f_U, f_V\}$ in C has a unique glueing f_X . Generalize that, and you get the definition of *sheafness*.

Sheafness

A compatible family $\{f_U, f_V\}$ is defined on $\{U, V\} = {}^{\mathsf{U}}_{0}^{\mathsf{U}}$, and it can be extended, using the restriction maps $\rho_{UW} : FU \to FW$ etc, to a downward-closed compatible family $\{f_U, f_V, f_W, f_\emptyset\}$,

defined on
$$\{U, V, W, \emptyset\} = 101$$
...

The "unique glueing" f_X of $\{f_U, f_V\}$ can be extended to a downward-closed compatible family $\{f_X, f_U, f_V, f_W, f_\emptyset\}$, defined on $\{X, U, V, W, \emptyset\} = \frac{1}{1}^1$.

The restriction

$$\{f_{\mathcal{X}}, f_{\mathcal{U}}, f_{\mathcal{V}}, f_{\mathcal{W}}, f_{\emptyset}\} \stackrel{\rho}{\mapsto} \{f_{\mathcal{U}}, f_{\mathcal{V}}, f_{\mathcal{W}}, f_{\emptyset}\}$$

is trivial to define - sheafness means that maps like these are bijections.

Topological sheafness

A closure operator:

$$\sqcup \{U, V, W, \emptyset\} = \{X, U, V, W, \emptyset\}$$

it takes the union $U \cup V \cup W \cup \emptyset = X$ and then all subsets of that. It acts on \mathbb{V}'' : $\square : \bullet \bullet'' \to \bullet \bullet''$

$$\sqcup_{1}^{10} = 1_{1}^{11}$$

Which elements of \mathbb{V}'' are stable by \sqcup ?

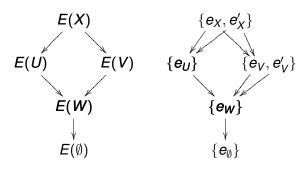
Only $\downarrow \{U, V\} \mapsto \downarrow \{X\}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\emptyset \mapsto \{\emptyset\}$ $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ are *not* stable by \sqcup .

The stable elements of \mathbb{V}'' are these: 1^0_1 .

These diagrams of stable elements are what we need to define sheaves "in general".

The evil presheaf

A presheaf F in $\mathbf{Set}^{\mathcal{O}(\mathbb{V})^{\mathrm{op}}}$ is simply a functor $F:\mathcal{O}(\mathbb{V})^{\mathrm{op}}\to\mathbf{Set}$.



The evil presheaf $E: \mathcal{O}(\mathbb{V})^{\operatorname{op}} \to \mathbf{Set}$, above, fails to be in a sheaf in two ways: the compatible family $\{e_U, e_V\}$ has two different glueings, the compatible family $\{e_U, e_V'\}$ doesn't have a glueing.

Dual operations

Due to we being in a finite / planar / etc case, several interesting operations have duals (adjoints):

- In finite DAGs the transitive-reflexive closure $(A, R) \mapsto (A, R^*)$ has an adjoint that keeps only the "essential arrows" of the graph;
- The "let the paint flow down" operation $\downarrow_0^{0_1} = 0_1^{0_1}$ has an adjoint $0_1^{0_1} \mapsto 0_0^{0_1}$ that returns the "generators" of an open set;
- Each closure operator like $\mathcal{U} \mapsto \sqcup \mathcal{U}$ has an adjoint that returns the smallest equivalent cover...

Where are the theorems?

Not here! Why???

Because this is "for children" -

we are focusing on the tools to let people check particular cases... and this *complements* [Bell 1988] and my IDARCT paper, that explains how to do theorems and archetypal cases in parallel

Slightly more advanced things:

- CCCs and Heyting Algebras; $(\land Q) \dashv (Q \rightarrow)$
- lacktriangle presheaves of the form $\mathbf{Set}^{\mathbb{D}}$ as toposes
- the classifier object of a Set^D
- lacktriangle other modalities (besides \sqcup) in a **Set** lacktriangle
- all logical properties of modalities follow from three axioms
- operations on the lattice of modalities
- forcing
- sheafification
- geometric morphisms between toposes I need help here =(

For Further Reading I

J.L. Bell.

Toposes and Local Set Theories.

Oxford, 1988 (re-ed: Dover, 2007).

E. Ochs.

Internal Diagrams and Archetypal Reasoning in Category Theory Logica Universalis, 2013

http://angg.twu.net/math-b.html.