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Beware: These notes are still being written! My plan is to give a presentation
based on them at http://www.cle.unicamp.br/ebl2011/, but whether that
it is going to be official or just to a few colleagues is something that depends
on the goodwill of the organizers (yeah, I would give less rank-points to
incomplete sumbissions, too!). You are not allowed to blame me too hard for
holes & faults at this moment — please send comments instead!

These notes are a follow-up to [Och10], where, in section 18, we hinted at a
notion of “obviousness” for definitions and theorems that should be (or rather,
that ought to be!) formalizable. Roughly speaking, a way to present a theorem
makes that theorem “obvious” if 1) the reader can complete all the details
omitted from the presentation by himself, 2) the reader can store the theorem
itself in his memory using very little “mental space”. In order to formalize
that we analyzed how discarding, or forgetting, information acts as a kind of
projection, and how reconstructing the missing information is akin to lifting.
By using diagrams and well-chosen notations — and bordering on ambiguity in
the right way — it becomes possible to infer quite a lot from the names of the
objects and operations. A “well-chosen notation” for a general structure — i.e.,
one that allows us to commit to memory just a few diagrams, and from them
reconstruct all the rest — usually comes from an elementary particular case
for that structure; we call that particular case, and the language and notation
coming from it, the “archetypal model” for that structure (see [Och10], section
15, for the details). Here we will discuss a very surprising “well-chosen notation”
for sheaves.

(This introduction will not be convincing until I formalize how to interpret
diagrams formally... and the case of hyperdoctrines is much easier, and will
probably be done before sheaves).

Now consider the following question, which at first sight may seem to be
impossible to treat mathematically:

Why are sheaves and sheafification hard to understand?
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and the following conjecture:

Categories of the form SetD, where D is a finite poset, form an
archetypal model for basic sheaf theory.

For “basic sheaf theory” we understand the contents of, for example, chapter
5 (?) of [Bel88] or chapter 21 of [McL92]; that is, not current research topics,
but just the difference between knowing the fundamentals of sheaves as they
are viewed in Topos Theory and knowing nothing about them at all. To prove
that conjecture completely we would have to: 1) present all the definitions and
theorems of basic sheaf theory in the language of categories of the form SetD; 2)
show how to lift these constructions to the general case; 3) sketch a translation
between the language coming from the archetype and the language and notations
from standard presentations — say, the above-mentioned [Bel88] and [McL92],
plus [Joh02] and [MM92]. And ideally all that should be done in enough details
to make it obvious how to translate all the constructions into, say, Agda [ref?]
(with an extension to let any piece of LATEX code, even a diagram, stand for an
identifier). Then we would have a first answer for our initial question: sheaves
and sheafification are “hard” because they need all those many constructions
and lifting steps; basic sheaf theory can indeed be reconstructed from just a few
core ideas and “hints”, but the number of reconstruction steps is huge.

Sheaves may be “hard” for still another reason. The archetypal model pro-
posed here, which focuses on finite and discrete objects given explicitly, is
quite different from the standard,approach (e.g., the one in chapters II, III,
V of [MM92]), that uses infinite, “continuous” objects all the time, and is very
generic.

This is a paragraph from [Bye07] (p.204):

For a subject that revels in the abstract, mathematical ideas are of-
ten very concrete. Think of the discussion of “variables” in Chapter
1. The domain of a variable may include an infinite range of values,
but when a variable is used we think of it as having a definite and
particular value. This enables us to think concretely. This men-
tal technique is used very generally in mathematics. We want to
understand some mathematical phenomenon that arises in a wide
variety of circumstances. How is one to think about such a general
phenomenon? Often one thinks in depth about some particular but
generic example — some computation or picture. Of course the ge-
nius is in picking the right example or examples. One looks for some
specific example that captures all the subtleties of the general situa-
tion. Thus “what is going on” is often revealed within the specificity
of a particular example. The task of extending and abstracting that
understanding is often secondary. The role of specific counterexam-
ples in establishing the boundaries of some mathematical theory is
balanced by the role of specific generic examples for which one can
say that they illustrate the “general case.”
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It should be possible to formalize Byers’s notion of “right example” precisely
in the framework of [Och10] — and basic sheaf theory may be a good case to
study with that goal in view, because it can be reconstructed from two different
families of “right examples”, one discrete, one continuous.

So far, so good: we have delineated a big project, whose interest and rel-
evance should be hard to deny. However, these notes are just the first steps
towards that — we are only going to present the basic tools for working on
toposes of the form SetD, and show what the basic definitions and construc-
tions for sheaves become in that case. These notes can be considered as a
complement and an introduction for [Sim01] and [Bel88] (its chapter 5(?)); I
wrote them for an audience of logicians and computer scientists who are neither
categorists, nor topologists, and who may have struggled with Category Theory
(...)

1 Positional notation

We will say that a subset A of Z2 is well-positioned when inf({x | (x, y) ∈
A }) = inf({ y | (x, y) ∈ A }) = 0; a well-positioned rectangle (of width w and
height h) is a subset of Z2 of the form {0, . . . , w − 1} × {0, . . . , h− 1}. We can
use a positional notation to represent functions from well-positioned rectangles
to N. For example:

4567
0123 : {0, 1, 2, 3} × {0, 1} → N

(x, y) 7→ x+ 4y

We will use bullet diagrams, like ••• , to denote well-positioned finite subsets
of Z2. For typographical convenience we will draw these bullet diagrams by

squeezing them a bit horizontally: ••• , instead of • •• .
The set ••• is a subset of a well-positioned rectangle; its characteristic function

is 101
010 . We can adapt the idea of a positional notation to represent functions

whose domains are arbitrary well-positioned finite subsets of Z2 to N. For
example:

24
1 : ••

• → N
(x, y) 7→ x+ 2y

So, 10
1 is a characteristic function with domain ••• , and by abuse of language

we will sometimes denote subsets of well-positioned subsets of Z2 by their char-
acteristic functions.

Also, a notation like (25
5 → 123

456) will stand for a function between two well-
positioned subsets of Z2,

(25
5 → 123

456) : ••
• → •••

•••
(x, y) 7→ (x−y+5

2 , −x+y+1
2 )
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that can be defined formally as composite, (25
5 → 123

456) := (123
456)

−1 ◦ (25
5 ):

••
• {2, 5}

(25
5 )

// {2, 5} {1, 2, 3, 4, 5}� � // {1, 2, 3, 4, 5} •••
•••

(123
456)

−1

//

25
5

123
456
//

The natural indexing on a well-positioned finite subsetA of Z2 is the bijection
indexA : A→ {1, . . . , |A|} that enumerates all elements in A in “reading order”,
starting from the top line and traversing the elements in each line from left to
right. For example, the natural indexing on ••• is 12

3 .

2 ZDAGs

A characteristic function like 10
0 gives me the impression of something unstable:

it has an element, at the ‘1’, immediately above an empty position, indicated
by the ‘0’ at the bottom; ‘1’s feel heavier than ‘0’s, and the ‘1’ wants to fall,
and to change places with the ‘0’... It turns out that there are two good ways
to formalize that idea: by order-preserving functions and by topology. Let’s see
this.

We say that an arrow (x0, y0)→ (x1, y1) in Z2 × Z2 is a black pawn’s move
when it is of the form (x0, y0) → (x0 + ∆x, y0 − 1), for ∆x ∈ {−1, 0, 1}. Each
subset Z2 can be endowed with a natural directed (acyclical) graph structure,
whose arrows are the black pawn’s moves over its points. By an abuse of lan-
guage our bullet diagrams will sometimes stand for DAGs, instead of for just

subsets of Z2; the arrows are the black pawn’s moves. For example,
•
••
•
•

will stand

for the DAG at the left below; and by using the natural indexing we can ob-
tain an equivalent DAG, drawn at the right, whose explicit description is much
shorter — namely, ({1, 2, 3, 4, 5}, {(1→ 2), (1→ 3), (2→ 4), (3→ 4), (4→ 5)}).

(1, 3)

(0, 2) (2, 2)

(1, 1)

(1, 0)

↙ ↘

↘ ↙

↓

1

2 3

4

5

↙ ↘

↘ ↙

↓

A Z2-DAG, or simply a ZDAG, is a pair made of a finite well-positioned
subset of Z2 and its black pawn’s moves.

From now let be D = (D0, D1) be a ZDAG — but the definitions and theo-
rems below also work when D is an arbitrary directed graph.

If f : D0 → N, we say that f decreases on an arrow (α → β) ∈ D1 when
f(α) ≥ f(β); we say that f is non-decreasing when it does not decrease for any
(α→ β) ∈ D1. For example: 25

5 is non-decreasing, but 01
0 is not — it decreases

on the right arm of the ‘V’.
A subset of D0 is open if and only if its characteristic function is non-

decreasing. So, 00
0 , 00

1 , 01
1 , 10

1 , 11
1 are open sets of ••• , and 01

0 , 10
0 , 11

0 are not
open.
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The order topology on D, denoted by OD1(D0), O(D0), or O(D), is the set
of open sets of D. For example, O(••• ) = {00

0 ,
00
1 ,

01
1 ,

10
1 ,

11
1 }.

An Alexandroff Topology is one in which the family of open sets is also
closed by arbitrary intersections, not only by arbitrary unions; order topologies
are Alexandroff.

The interior of a set A ⊂ D0 is the union of all open sets contained in A.
The cointerior of a set A ⊂ D0 is the intersection of all open sets containing A;
in Alexandroff spaces Acoint is always an open set. We say that a subset A ⊂ D0

is representable when it is of the form {α}coint for some α ∈ D0.
Each ZDAG D = (D0, D1) has a natural topology; and the points of D0 are

in bijection with the representable open sets of O(D).

3 Priming

For any directed graph D = (D0, D1) the structure (O(D),)) is a DAG. We are
going to use this way of generating new DAGs so much that we need a short
name for it: we will call it “priming”. The figure below shows what happens in

the case when D =
••
••
••

; the representable open sets are marked with parentheses.
We are abusing the positional notation a bit more at the right, and using it to

denote a function from (
••
••
••

)′ =

•
••
••
••
••
••
•

to O(
••
••
••

) — we are indexing the points of

(
••
••
••

)′ not by numbers, but by the opens sets of O(
••
••
••

).

1 2

3 4

5 6

↙ ↘ ↙

↘ ↙ ↘

11
11
11

(
10

11
11

)
01

11
11

00
11
11

(
01

01
11

)

00
10
11

(
00

01
11

)

(
00

10
10

)
00

00
11

(
00

00
10

) (
00

00
01

)

00
00
00

↙ ↘

↘ ↙ ↘

↙ ↘ ↙

↙ ↘ ↙

↘ ↙ ↘

↘ ↙

� � α7→{α}coint

//

••
••
••

(
••
••
••

)′ =

•
••
••
••
••
••
•

� � //

The structure (O(D),)) has many more arrows than we’ve drawn above.
The diagram shows only the black pawn’s moves, and ‘)’ is actually the transi-
tive closure of that. However, the black pawn’s moves are exactly the “essential”
arrows in ‘)’, in a sense that we shall now make precise.
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4 Essential arrows

We start with some notation and definitions (on a directed graph (A,R)).
A reflexive arrow of R is an arrow of the form (α → α); Rirr is R minus its

reflexive arrows, and a relation R is irreflexive when R = Rirr.
Rrefl and Rtrans are the reflexive and the transitive closures of R. As we

are working on (A,R), Rrefl is R ∪ { (α → α) | α ∈ A }. We write R∗ for the
reflexive-transitive closure of R.

Two relations R,S ⊆ A × A are equivalent when R∗ = S∗ (or: when they
generate the same order topology).

An arrow (α → β) ∈ R is inessential when (R∗ \ {α → β})∗ = R∗. The set
of essential (i.e., non-inessential) arrows of R will by denoted by Ress.

A directed graph is good when R∗ = (Ress)∗. It is easy to see that all
the ZDAGs mentioned explicitly in examples above are “good”, and that their
black pawn’s moves are essential. However, if (A,R) = ({1, 2, 3}, {(1→ 2), (2→
3), (3 → 1)}) then R, R∗ and R−1 are equivalent, and R ∩ R−1 = ∅, so in this
case all arrows are inessential; and in (R, <) all arrows are again inessential.
So, very roughly, loops are evil, and loopless “dense” situations in which every
arrow is the composite of others are also evil. It will turn out that all finite
DAGs are good, and ZDAGs are finite DAGs, and therefore good. We will
sketch a constructive proof of that.

The length of a path α0 → α1 → . . . → αn is n. We write PathsR for the
set of all paths all of whose arrows are in R, and LongPathsR for the subset of
PathsR with just the paths of length ≥ 2. If (A,R) is a finite DAG then PathsR
is a finite set of finite paths. We define the functions endpointsR : PathsR → R∗

and lengthR : PathsR → N in the obvious way; note that the subscript ‘R’
indicates their domain.

A possible replacement in R is a pair ρ = ((α→ β), π), where (α→ β) ∈ R
and π is a path in R with endpointsR(π) = (α → β) and lengthR(π) ≥ 2. If
(A,R) is a DAG then in a replacement ((α → β), π) the path π cannot have
repeated arrows, and endpointsR(π) cannot be an arrow of π. We write ReplsR
for the set of possible replacements in R.

A replacement ρ = ((α → β), π) ∈ ReplsR induces a function replaceρ :
PathsR → PathsR\{(α→β)}, that expands every occurrence of an arrow α→ β in
a path by its expansion, π. The function replaceρ does not change endpoints,
and it is non-decreasing on lengths.

Let’s write PathsR(α→ β) for {π ∈ PathsR | endpointsR(π) = α→ β }. For
any (α → β) ∈ R∗ and ρ ∈ ReplsR the function replaceρ restricts to a function
from PathsR(α→ β) to PathsR(α→ β). If (A,R) is a finite DAG, then for each
α→ β ∈ R∗ the set PathsR(α→ β) is finite and non-empty, and we can define
the function

maxdistR : R∗ → N
(α→ β) 7→ sup { lengthR(π) | π ∈ PathsR(α→ β) },

which turns out to be invariant by replacements: for any ρ = ((α → β), π) ∈
ReplsR the domains of maxdistR and maxdistR\{(α→β)} are equal, and so are
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the values that these functions return — even though PathsR(α → β) may
be a bigger set than PathsR\{(α→β)}(α → β). The function maxdistR gives an
upper bound for how lengths are changed by replacements: we have, for any
π ∈ PathsR and ρ ∈ ReplsR,

lengthR(π) ≤ lengthR(replaceρ(π)) ≤ maxdistR(endpointsR(π)).

It also turns out that maxdistR split R in a very nice way: the arrows of R
which have replacements (i.e., which are the first component of some ρ ∈ ReplsR)
are exactly the ones in maxdist−1

R ({2, 3, . . .}) ∩ R, and the arrows of R which
have no replacements are exactly maxdist−1

R ({1}). Let’s give names to these
sets: R is the disjoint union of BasicR and NonBasicR, where:

BasicR = maxdist−1
R ({1}) ∩R = maxdist−1

R ({1})
NonBasicR = maxdist−1

R ({2, 3, . . .}) ∩R

These sets change in a very simple way after a replacement. If ((α→ β), π) ∈
ReplsR, then

BasicR\{(α→β)} = BasicR
NonBasicR\{(α→β)} = NonBasicR \ {(α→ β)}

This means that we can delete the “non-basic” arrows of a finite DAG
(A,R) in any order. Take a bijection between NonBasicR and a set of the form
{1, . . . , n}; this gives us a sequence (α1 → β1), . . . , (αn → βn). Let R0 = 0, and
define R1, . . . , Rn by making each Ri be Ri−1 minus the arrow (αi → βi). For
each i, choose any πi ∈ PathsRi−1

(αi → βi), and define ρi = ((αi → βi), πi).
Now ρ1, . . . , ρn is a sequence of replacements, that can be used to shrink the
relation R = R0 to an equivalent relation Rn = BasicR = Ress: using the com-
posite replacen ◦ . . .◦ replace1 : PathsR → PathsRess we can see that R∗ = (Ress)∗.
The relation Rn is minimal, and cannot be shrunk anymore.

It is clear from that argument that a relation R is good if and only if the
relations equivalent to it are exactly the ones in the set {S | Ress ⊆ S ⊆
R∗ }; and then Ress =

⋂
{S | S∗ = R∗ }, and the intersection of two relations

equivalent to R is again equivalent to R.
Every ZDAG D = (A,R) is a finite DAG, and so is good. Also, if ((x, y)→

(x′, y′)) ∈ R∗ then maxdistR((x, y)→ (x′, y′)) = y−y′, and so the essential/basic
arrows of R∗ are exactly the black pawn’s moves. All relations equivalent to
R induce the same order topology on A. As ZDAGs are good, we have two
canonical ways to represent (D,O(D)) by an relation on A: R∗ and Ress, and
Ress is by far more economical.

Here is a slightly more general result (for details, see [some topology book]):
Theorem. If A is a finite set, then there is a bijection between: T0 topologies

on A, partial orders on A, and DAGS on A having only essential arrows.
Some T0 topologies (and, equivalently, partial orders) on finite sets, but not

all, are equivalent to ones coming from ZDAGs; for example, add the arrow
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3 → 5 to
1

23
4
5

and you get something that is not equivalent to a ZDAG. But

topologies coming from ZDAGs will be enough for our purposes, and we will
represent them by bullet diagrams.

5 Diamond-shaped regions

If (A,R∗) is a preorder, we say that a set S ⊆ A is a diamond-shaped region if
it is of the form {β ∈ A | (α→ β) ∈ R∗ and (β → γ) ∈ R∗ }, for some α, γ ∈ A.
We saw that if (A,R) is a finite DAG then the set of the relations equivalent to
R is diamond-shaped in (P(A2),⊆), with extremities Ress and R∗.

If (A,R) is a finite DAG then the subsets of A whose cointerior is a given open
set U form a diamond-shaped region. One of the extremities of the diamond is
U itself; the other extremity can be calculated by intersections, and, as we will
not use that operation much, let’s also call it ‘ess’ — U ess is the set of “essential
points”, or “generators”, for U .

Formally, we can define the set of essential points of B as Bess :=
⋂
{C ⊆

A | Ccoint = Bcoint }, and, for example,
01

11
11

ess
=

01
10
00

. On a finite DAG (A,R), the
subsets of A whose cointerior is a given open set U are exactly the ones between
U ess and U ; and the representable open sets are the ones such that |U ess| = 1.
Note that the operation B 7→Bess gives us a minimal way to express each open
set on a finite DAG as a union of representable open sets: U =

⋃
{ {α}coint | α ∈

U ess }. An example should make this less abstract:

01
11
11

=
⋃
{ {α}coint | α ∈ 01

11
11

ess
}

=
⋃
{ {α}coint | α ∈ 01

10
00
}

=
⋃
{ 01

00
00

coint
,

00
10
00

coint
}

=
⋃
{ 01

01
11
,

00
10
10
}

=
01

01
11
∪ 00

10
10
.

Another way to state this is: “The operation (·coint)−1 partitions P(A) into
diamond-shaped regions”. We shall see soon that if (·∗) : H→ H is any Lawvere-
Tierney modality on a finite Heyting algebra, then (·∗)−1 also partitions H into
diamond-shaped regions.

6 Continuity

A directed graph (A,R∗), where R∗ is a reflexive and transitive relation on
A, may be regarded as a category (a “preorder”), A; we can define formally
HomA(α, β) as {(α → β)} ∩ R. We will sometimes write AR instead of A for
clarity.
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A function f : A → B may be seen as a map f : (A,R) → (B,S) or
f : (A,R∗)→ (B,S∗) between DAGs, which may or may not repect the order,
or as a map f : (A,OR(A)) → (B,OR(B)) between topological spaces, which
may or may not be continuous, or as a map f : |A| → |B|, which may or may
not be extendable to (i.e., be the action on objects of) a functor f : A → B.
Note that we always use the name ‘f ’ for the map; when we want to regard it
in a specific way we write it as f : → , and give the rest of the information
in the way we write its domain and codomain.

Theorem. The following conditions are equivalent:
1) f : (A,R)→ (A,S∗) is order-preserving,
2) f : (A,R∗)→ (A,S∗) is order-preserving,
3) f : (A,OR(A))→ (B,OS(B)) is continuous,
4) f : |AR| → |BS | is the object part of a functor (or, more shortly: “f :

AR → BS is a functor”).

Here is a very interesting example. Take any ZDAG D = (A,R), and con-
sider the transformation on A that duplicates the y-coordinate of each point;
the resulting ZDAG, Ddiscr = (( 1

2 )A, ∅), has no black pawn’s moves, and so is
discrete. The obvious “anti-discretization” function adD : Ddiscr → D is contin-
uous.

Let’s look at a concrete case for clarity: ad :
•••
•••
→ •••
•••. It induces a map

ad−1 : O(••••••) → O(
•••
•••

), that, modulo a factor of 2 in the y coordinate, is

exactly the inclusion of O(••••••) in P(••••••). We can regard ad−1 as a functor,
and it turns out that is has both adjoints, which are exactly the “interior” and
“cointerior” operations defined in section 2; the diagram below — an “internal
diagram”, as in [Och10] — should convince the reader of the truth of this. We
actually have more: ess a coint a discr a int, but the operation ess is not going
to be important.

(
•••
•••

) (••••••)
ad //

(
100

000
)

(
100

100
)

��

(
110

110
)

(
111

110
)

��

(100
110)

(100
110)
��

(100
110)

(100
110)
��

Ddiscr Dad //

A

(Acoint)discr
��

(C int)discr

C
��

(Bdiscr)coint

B

(∼=)
��
B

(Bdiscr)int

(∼=)
��

(
100

000
) (100

100)
� coint //(

100

000
)

(
100

110
)

��

(100
100)

(100
110)
��

oo //

(
100

110
) (100

110)
oo discr �(

100

110
)

(
111

110
)

��

(100
110)

(110
110)
��

oo //

(
111

110
) (110

110)
� int //

O(
•••
•••

) O(••••••)
// //

O(
•••
•••

) O(••••••)
oo ooO(

•••
•••

) O(••••••)// //O(
•••
•••

)

P(••••••)

A Acoint� //A

Bdiscr
��

Acoint

B
��

oo //

Bdiscr Boo �Bdiscr

C
��

B

Ccoint
��

oo //

C Ccoint� //

O(Ddiscr) O(D)
// //

O(Ddiscr) O(D)oo ooO(Ddiscr) O(D)// //O(Ddiscr)

P(D0)

The adjoints associated to arbitrary continuous functions between DAGs will
be discussed in section 18.
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7 Quotient Topologies

Let q (for “quotient”) be the following surjective function, going from R to a
set of three symbols:

q : R → {α, β, γ}

x 7→


α when x ∈ (−∞, 0]

γ when x ∈ (0, 1)

β when x ∈ [1,∞)

There are eight subsets A ⊆ R such that q−1(q(A)) = A; only five of them are
open. Here they are, ordered by reverse inclusion:

(−∞,∞)

(−∞, 1) (0,∞)

(0, 1)

∅

↙ ↘

↘ ↙

↓

q //oo
q−1

{α, β, γ}

{α, γ} {β, γ}

{γ}

∅

↙ ↘

↘ ↙

↓

The five sets at the right form a topology on {α, β, γ}— the quotient topol-
ogy induced by q. The general definition is this: if (X,O(X)) is a topolog-
ical space, then the topology on Y induced by the function q : X → Y is
O(Y ) := {B ⊆ Y | q−1(B) ∈ O(X) }. The induced order relation on Y ,
R ⊆ Y × Y , is defined by: αRβ iff every open set of Y that contains α also
contains β. In the case of our q, this is:

(−∞, 0] [1,∞)

(0, 1)
↘ ↙

α β

γ
↘ ↙

When Y is finite (or, more generally, when OY is Alexandroff) we can re-
construct O(Y ) from its order relation: O(Y ) := OR(Y ). When Y is not
Alexandroff — for example,if q := id : R→ R — then we have O(Y ) ( OR(Y ).

We are going to use that order topology on {α, β, γ} in our archetypal defi-
nition for sheaves, Note that (Y,O(Y )) is (••• ,O(••• )), but we are using α, β, γ
as names for its points — αβ

γ , instead of 12
3 .

We will need a pronounceable name for ••• ; let’s call it V. It will also be
convenient to have names for its five open sets. They will be X, U , V , W , ∅:

(−∞,∞)

(−∞, 1) (0,∞)

(0, 1)

∅

↙ ↘

↘ ↙

↓

{α, β, γ}

{α, γ} {β, γ}

{γ}

∅

↙ ↘

↘ ↙

↓

X

U V

W

∅

↙ ↘

↘ ↙

↓

Sometimes U , V , W will stand for {α, γ}, {β, γ}, {γ} — then we will have
U ∪V = X and U ∩V = W —, sometimes for arbitrary open sets (as variables).
Similarly, X will stand for the “top” open set.

In the next sections we will work on a fixed topological space — V — but
the way to generalize that should be obvious.
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8 Covers

A cover (in V) is a subset of O(X); a cover for U ∈ O(X) is a subset of O(X)
whose union is U . We will use a notational convention to reduce the use of ‘

⋃
’s:

U denotes a cover for U , V a cover for V , X a cover for X (the whole space),
and so on; so we have

⋃
U = U ,

⋃
V = V , etc. As we may have different covers

for the same open set we will use annotations to distinguish them: for example,
U ′′, U∗.

We can use subsets of
•
••
•
•

to denote covers in V. For example,
0

11
0
0

(= {U, V })
is a cover for X.

Covers may be (downward) saturated, in the sense that if U 3 V and we
have an arrow V → W — i.e., if V ⊃ W — then we also have U 3 W . For

example,
0

11
0
0

is not saturated, but
0

11
1
1

is. Saturated covers correspond to open

sets of
•
••
•
•

.

We will use the annotation ‘•’ to indicate that a cover is saturated: U•
denotes a saturated cover for U , U an arbitrary one. Type-theoretically, a U• is
(dependent) pair made of a cover U and a proof (or witness) that it is saturated;
and a U is a triple composed of an open set U , a family of open subsets of X
(or of U), and a proof that the union of that family is U .

We have a natural operation that takes a saturated cover and forgets the
proof that it is saturated; that operation goes from the set of saturated covers
to the set of all covers. We also have a natural operation that takes an arbitrary
cover and saturates it. In the spirit of [Och10], we can name these operations
U• ↪→ U and U 7� U•, where ‘↪→’ is an injective ‘ 7→’ and ‘7�’ a surjective ‘7→’.
The composite U• ↪→ U 7� U• is the identity, but the composite U 7� U• ↪→ U
is not:

P(
•
••
•
•

) O(
•
••
•
•

)
coint// // O(

•
••
•
•

) P(
•
••
•
•

)// //

0
11
0
0

0
11
1
1

� // //
0

11
1
1

0
11
1
1

� � //

It is a kind of closure operation, as we shall see soon. Clearly, U 7� U• ↪→ U
is a weird name for it, as the last ‘U ’ may be different from the first. We will
fix that later.

A stronger kind of saturatioon is the following: we say that a cover U is
doubly saturated if it contains all the subsets of

⋃
U . We will annotate doubly

saturated covers with a ‘••’, and besides the obvious forgetful operations U•• ↪→
U• and U•• ↪→ U we also have “double saturation” operations, U 7� U•• and

U• 7� U••. For example, to calculate (
0

11
0
0

)•• we need to add to
0

11
0
0

= {U, V } all

the subsets of
⋃
{U, V } = U ∪ V = X; the result is

1
11
1
1

. The doubly-saturated

covers are exactly the representable open sets of
•
••
•
•

.
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The closure operation U•�U•• ↪→ U• will be one of our main objects of
interest here. It will be a key ingredient in defining sheaves and sheafification
in the most natural setting, which is this: we start with an arbitrary DAG V,
prime it once to obtain the topology O(V) (which will be a Heyting algebra),
and prime that to obtain the set of saturated covers:

α β

γ
↘ ↙

X

(U) (V )

(W )

∅

↙ ↘

↘ ↙

↓
//

X

(U) (V )

(W )

∅

↙ ↘

↘ ↙

↓

 1
11
1
1

=X••

0
11
1
1

=X•◦

 0
10
1
1

=U••
 0

01
1
1

=V••

 0
00
1
1

=W••

 0
00
0
1

=∅••

0
00
0
0

=∅•◦

↓

↙ ↘

↘ ↙

↓

↓

//

34
5

1
34
5
6

//
1

34
5
6

1
2

34
5
6
7

//

V V′// V′ V′′//

In the diagram above the representables are marked in parentheses, and we
give names to the seven saturated covers. It turns out that for any starting DAG
D and any open set U ∈ O(D) the set {U• | U• is a saturated cover for U } is
diamond-shaped; we mark with a ‘••’ its maximal element — a doubly saturated
cover — and with a ‘••’ its minimal element — the smallest saturated cover for
U . Here’s why this happens.

Theorem. For any topological space (X,O(X)) and covers U , V, U•, V•,
U••, V•• on it,

(i)
⋃

(U ∪ V) =
⋃
U ∪

⋃
V,

(ii) U• ∪ V• is saturated,
(iii) U•• ∪ V•• is not necessarily doubly saturated,
(iv)

⋃
(U ∩ V) ⊆

⋃
U ∩

⋃
V

(v)
⋃

(U• ∩ V•) =
⋃
U• ∩

⋃
V•

(vi) U• ∩ V• is saturated,
(vii) U•• ∩ V•• is doubly saturated.
Proof. The only non-trivial part is

⋃
(U• ∩ V•) ⊇

⋃
U• ∩

⋃
V•. Take any

point γ ∈
⋃
U• ∩

⋃
V•; there are open sets W ′, W ′′ with γ ∈ W ′ ∈ U• and
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γ ∈ W ′′ ∈ V•. Define W := W ′ ∩W ′′; we have γ ∈ W ∈ U• and γ ∈ W ∈ V•,
so γ ∈W ∈ U• ∩ V• and γ ∈

⋃
(U• ∩ V•).

An easy corollary of this is that if U•′ and U•′′ are two saturated covers of
U , then U•′∩U•′′ is still a saturated cover of U . Let’s write satcovers(U) for the
set of saturated covers of U . We know that satcovers(U) is closed by arbitrary
unions and finite intersections, and has U•• as its top element; if satcovers(U)
is finite then the intersection of all saturated covers of U is a still a cover of U ,
and is the minimal one; so:

Theorem. If D is finite then for each set satcovers(U), for U ∈ O(D), is a
finite diamond-shaped region.

9 Thinness

If C = (A,R) and D = (B,S) are directed graphs, we say that a function
f : A→ B is an inclusion of C in D if for all points α, β ∈ A we have αR∗β iff
f(α)S∗f(β); for example, f = (15

4 → 123
456) is not an inclusion because 4→ 5 ∈ R

but 4 ∈ 5 /∈ S. An equivalent, but less elementary, characterization of inclusions
is the following: f : A → B is an inclusion iff f−1(O(D)) = O(C). Note that
being an inclusion is a stricter condition than being continuous.

We say the C is contained in D (notation: C ≤ D) when there is some
inclusion f : C→ D.

It is easy the characterize those ZDAGs D such that D′,D′′, . . . can all be
represented as ZDAGs.

Definition. A directed graph D is thin when
• •
• • 6≤ D and ••• 6≤ D.

Theorem. If D is not thin then D′′ cannot be represented as a ZDAG. The
proof follows immediately from the following five easy lemmas.

Lemma. D ≤ D′. This generalizes the figure in section 3.
Lemma. If C ≤ D then C′ ≤ D′.
Lemma. If (•••)′ ≤ D then D cannot be represented as a ZDAG.

Lemma. ••• ≤ D implies (•••)′ ≤ D′, which implies that D′ cannot be a
ZDAG.

Lemma.
• •
• • ≤ D implies ••• ≤ D′, which implies that D′′ cannot be a

ZDAG.
The following diagram explains some of the lemmas above. The horizontal
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‘�’ arrows are primings.

(1 2 4)


7

3 5 6

1 2 4

0

↙↓↘

↓↘↙ ↘↙↓

↘↓↙

// //

(4 5 6)


1

2 3

4 5 6

7 8

9

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙



��
��

(
4 6

7 8
↓ ↓

)


1

2 3

4 5 6

7 8

9

↙ ↘

↙ ↘ ↙ ↘

↘ ↙ ↘ ↙

↘ ↙

// //

We also have a kind of a converse for the theorem above.
Lemma. If a ZDAG D has three or more connected components then ••• ≤ D,

and so D it is not thin.
Lemma. If a ZDAG D has two connected components and each of them has

more than one vertex, then D is not thin.
Lemma. A thin ZDAG with exactly two connected components is isomorphic

to a isolated point plus a tower with n points.
Lemma. If the ZDAG D is (isomorphic to) an isolated point plus a tower of

n points then D′ is a tilted 2× (n+ 1) rectangle. For example: (
•
• •)′ =

•
• •
• •
•

.

Lemma. If D is a thin ZDAG with a single connected component then D′ is
also a thin ZDAG with a single connected component.

Theorem. If D is a thin ZDAG then D′ is also a thin ZDAG.

We can combine both theorems: let D be a ZDAG; then D′,D′′, . . . are all
ZDAGs iff D is thin — and if D is a thin ZDAG then D′,D′′, . . . are all thin
ZDAGs, with a single connected component each.

We saw how thin ZDAGs are nice. Now we will see that they are useful.

10 Presheaves

A proto-presheaf F on a directed graph D = (A,R) is a pair (F0, F1), where F0

is the “action on objects” of F , which receives points of A and returns sets, and
F1 is the “action on morphisms” of F , that takes each arrow α → β of A to a

map from F (α) to F (β). For example, a proto-presheaf on
•
••
•
•

can be drawn as:

1

2 3

4

5

↙ ↘

↘ ↙

↓

F (1)

F (2) F (3)

F (4)

F (5)

↙ ↘

↘ ↙

↓
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A presheaf F on a directed graph D = (A,R∗) — note that now we are using
R∗, not R — is a proto-presheaf F on D plus the assurance that F is functorial,
i.e., that for reflexive arrows α→ α the associated function F (α→ α) : F (α)→
F (α) is the identity, and that for composable arrows α→ β and β → γ we have
F1(α→ β);F1(β → γ) = F1(α→ β;β → γ).

This is a classical example of a presheaf. Let D be (O(R),⊇) — a huge poset
— and set C∞0 (U) to the set { f : U → R | f is C∞ } and C∞1 to the operation
that restricts the domain of those functions; for each reverse inclusion U ⊇ V
in D, C∞1 applied to the arrow U → V yields the restriction function

C∞1 (U → V ) : C∞0 (U) → C∞0 (V )
fU 7→ fU |V

(fU : U → R) 7→ (fU |V : V → R)

Now define a presheaf C∞′ on
•
••
•
•

by composing C∞ with the quotient q of

section 7:
C∞((−∞,∞))

C∞((−∞, 1)) C∞((0,∞))

C∞((0, 1))

C∞(∅)

↙ ↘

↘ ↙

↓

C∞′(X)

C∞′(U) C∞′(V )

C∞′(W )

C∞′(∅)

↙ ↘

↘ ↙

↓

And this will be our other favorite example; we will call it the evil presheaf,
and we will see soon that it fails the two conditions that a presheaf must obey
to be a sheaf.

E(X)

E(U)
������
E(X)

E(V )
��????

E(U)

E(W )
��????

E(V )

E(W )
������

E(W )

E(∅)
��

{eX , e′X}

{eU , e′U} {eV , e′V }
�������
~~}}}}

  AAAAAA

��-
---

{eW }
""EEEEE

{eW }
��7777

{eW }
������

{eW }
{{xxxxxx

{eW }

{e∅}
��

Let’s set, temporarily, U := (−∞, 1) and V := (0,∞). If we start with any
two functions fU ∈ C∞(U) and fV ∈ C∞(V ) that are “compatible”, in the sense
that fU |U∩V = fV |U∩V , then there exists exactly one “glueing” for them, i.e.,
a function fU∪V ∈ C∞(U ∪ V ) such that fU = fU∪V |U and fV = fU∪V |V . The
same happens in C∞′, but now U = {α, γ} and V = {β, γ}, and so the notion
of “restriction” is a bit more abstract; now to obtain fU |U∩V from fU we have
to do fU |U∩V := F (U →W )(fU ).

In the evil presheaf E the sets E(X), . . . , E(∅) and the “restriction functions”
E(X → U), . . . , E(W → ∅) were chosen arbitrarily. They obey functoriality
(because E(X → U);E(U → W ) = E(X → V );E(V → W )), but not the
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idea that “compatible functions must have exactly one glueing”: eU and eV
are compatible yet they have two different glueings, eX and e′X ; e′U and e′V are
compatible but can’t be glued.

The best way to formalize the glueing condition in its general form is by
using prestacks (as in [Sim01], sections 3–5).

11 Prestacks

Let’s write ΣA for the disjoint union of all the “fibers” in a presheaf A; example,
ΣE = E(X)q . . .q E(∅). We can define a function J·K : ΣA→ Ω, that returns
for each aU ∈ A(U) ⊂ ΣA the corresponding U — the “extent” of aU . We can
also define a binary operation, ‘·’, usually non-commutative, that in reality will
be several different operations packed into one, and that will sometimes behave
as intersection, sometimes as restriction. We start by defining what happens
when the ‘·’ receives two elements from the disjoint union Ω q ΣA. There are
four cases:

U · V := U ∩ V
U · bV := U · JbV K

= U ∩ V
aU · V := A(JaU K→ JaU K · V )(aU )

= A(U → U ∩ V )(aU )
= aU |U∩V

aU · bV := A(JaU K→ JaU K · JbV K)(aU )
= A(U → U ∩ V )(aU )
= aU |U∩V

Note that aU ·bV = bV ·aU exactly when aU and bV are compatible, and that
the operation ‘·’ is associative; also our discipline of always writing the “extent”
of a point of ΣA as its subscript is paying off!

Now we will extend that operation to let it receive and return elements from
ΩqΣAqP(Ω)qP(ΣA) — but to avoid confusion we will not go beyond single
applications of ‘P’. We use the standard trick: if x and y are elements and X
and Y are sets, then:

x · Y := {x · y | y ∈ Y }
X · y := {x · y | x ∈ X }
X · Y := {x · y | x ∈ X, y ∈ Y }

By doing that we get an operation ‘·’ that is in fact 16 different operations
being treated as one. If aU and bV stand for subsets of ΣA, then...

· V bV V bV
U U · V ∈ Ω U · bV ∈ Ω U · V ∈ P(Ω) U · bV ∈ P(Ω)
aU aU · V ∈ ΣA aU · bV ∈ ΣA aU · V ∈ P(ΣA) aU · bV ∈ P(ΣA)
U U · V ∈ P(Ω) U · bV ∈ P(Ω) U · V ∈ P(Ω) U · bV ∈ P(Ω)
aU aU · V ∈ P(ΣA) aU · bV ∈ P(ΣA) aU · V ∈ P(ΣA) aU · bV ∈ P(ΣA)
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(...)
A compatible family is a set aU ⊂ ΣA such that all its elements commute.

If aU is a compatible family then we can’t have aV , bV ∈ aU with JaV K = JbV K
and aV 6= bV ; so J·K is injective on aU , and establishes a bijection between aU
and U := JaUK = { JaV K | aV ∈ aU }. Let’s establish a convention: from now on,
when we write a subset of ΣA as aU that will mean that it is a compatible family,
with JaUK = U ; subsets of ΣA that are not necessarily compatible families will
be written as A′, B, etc. Also, we will denote the element of aU over V ∈ U as
(aU )(V ), or simply as aV .

A cover U ⊂ Ω is saturated iff U · Ω = U .
A coherent family aU is saturated iff aU · Ω = aU .
If U• and V• are saturated covers then U• · V• = U• ∩ V•.
A cover U is representable iff there exists a U with U = U · Ω.
If U• ⊃ V• then aU• · V• is the restriction of aU• to V•.

12 Heyting Algebras

Every O(X) is a Heyting Algebra.
When X is Alexandroff O(X) is even bi-Heyting.
Every D′ is a Heyting Algebra.
Diagram and example:

P

Q
}}zzzzzzzzzzz

P

Q ∧R
��

P

R
!!DDDDDDDDDDD

Q Q ∧Roo Q ∧R R//

P

>
��

P ∧Q Poo �P ∧Q

R
��

P

Q ��R��
oo //

R Q ��R� //

000
110

011
111

}}zzzzzzzzz
000
110

011
111∧ 110

110

��

000
110

110
110

!!DDDDDDDDD

011
111

011
111∧ 110

110
oo 011

111∧ 110
110

110
110
//011

111∧ 110
110

010
110

000
110

111
111

��

000
110∧ 000

011
000
110

oo �000
110∧ 000

011

010
110

��

000
110

(000
011

��C 010
110)

int
��

oo //

010
110 (000

011
��C 010

110)
int� // (000

011
��C 010

110)
int

111
110

int111
110

int 110
110

Explain that we are now using the arrows in the standard direction (inclu-
sion). The > (“top”) is terminal. Suggestion to the reader: change the values
of P , Q, R above; when one of the vertical arrows of the adjunction disappears
the other also does.
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13 Modalized Heyting Algebras

A.k.a. Lawvere-tierney topologies ([MM92], section V.1), or local operators
([Joh02], section A4.4)

Look at the space of saturated covers as a HA.
Rename it to Ω; then Ω = {∅•◦, . . . ,X ••}
(in the archetypal case).
The saturated covers will play the role of truth-values.
Let’s loot at the operation ·∗ : Ω→ Ω (double saturation, with a new name).
Important properties: P ` P ∗ = P ∗∗, P ` Q implies P ∗ ` Q∗, P ∗ ∧ Q∗ =

(P ∧Q)∗.
From just these properties we can prove all these about how the modality

interacts with ∧, ∨, ��:
P ∧Q

(P ∧Q)∗
��????? P ∧Q∗

(P ∧Q∗)∗
��?????

P ∗ ∧Q

(P ∗ ∧Q)∗
��????? P ∗ ∧Q∗

(P ∗ ∧Q∗)∗
?????

?????

P ∧Q P ∧Q∗//

(P ∧Q)∗ (P ∧Q∗)∗

P ∗ ∧Q P ∗ ∧Q∗//

(P ∗ ∧Q)∗ (P ∗ ∧Q∗)∗

P ∧Q

P ∗ ∧Q
��

(P ∧Q)∗

(P ∗ ∧Q)∗

P ∧Q∗

P ∗ ∧Q∗
��

(P ∧Q∗)∗

(P ∗ ∧Q∗)∗

00
1

10
1

��?????
01
1

11
1

��?????

11
1

11
1

��?????
11
1

11
1

?????

?????

00
1

01
1
//

10
1

11
1

11
1

11
1
//

11
1

11
1

00
1

11
1

��

10
1

11
1

01
1

11
1

��

11
1

11
1

(Insert the diagrams for ∨ and ��)
(Prove and explain everything)

14 Finite Modalized Heyting Algebras

We have a kind of dual to ∗ (minimal saturated cover).
The sets of the form {Q | Q∗ = P ∗ } are diamond-shaped.
Show the adjunction and examples.
Show how to recover ∗ from the set of ∗-stable truth-values.
The set of ∗-stable truth-values is a HA.
Each ∗ induces a quotient.
A definition of sheaf.

15 Finite Heyting Algebras

Def: the evil DAG, E is the one pictured below:
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α

β

::
ttt

β

δ

OO

δ

ε

dd
JJJ

α

γ

[[

77777

γ

ε

CC

�����

[It is not a HA; explain why. Three reasons: 1) it is not “graded”, i.e., the
operation that calculates the y-coordinate gives incoherent results for α; 2) it is
not distributive; 3) ...]

Update, 2011mar08: [Grä11] has a lot about that! I’m reading it — and I
need to change a lot of the terminology here.

(An interesting theorem, quite non-trivial: a ZDAG that is a Heyting Alge-
bra D is always a C′. To locate the points of D that are in the image of C we
take each essential arrow α → β in D and we check that the “difference set”
associated to α→ β, ↓ α\ ↓ β has a lower element...)

16 Subobject Classifiers

Let 1 be the singleton set {∗} in Set, let Ω ∈ Set be the set {0, 1}, and let
> : 1 → Ω be the morphism that takes ∗ to 1 ∈ {0, 1}. Then > has this very
nice property: for every monic A′ � A there is exactly one map χA′ : A → Ω
— the characteristic function of the image of A′ in A — that makes this square
a pullback:

A′ 1
! //A′

A

��

��

1

Ω

��
>
��

A Ω
χA′
//

↘

We will see how to generalize this a bit, to categories of the form SetC, where
C is a poset; the main aim of this section is to show how to “understand” (in
the sense of [Och10]) the following statement:

Let Ω ∈ SetC be the functor whose action on objects is U 7→Sub(HomC(U,−)),
and let> : 1→ Ω be the natural transformation defined by>(U)(∗) =
HomC(U,−) ∈ Sub(HomC(U,−)). Then for every monic A′ � A in
SetC there is exactly one morphism χA′ : A→ Ω making the square
(∗) a pullback.

Our archetypal case will be C := K =
•
••
•
•

, with arrows going down. The

objects of K are namedX, U , V , W , ∅, and, for example, HomK(U,W ) = {ρUW }
and HomK(U,X) = {}.
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The functor HomK(U,−) acts on objects as V 7→HomK(U, v), i.e., it is:

HomK(U,X)

HomK(U,U) HomK(U, V )

HomK(U,W )

HomK(U, ∅)

↙ ↘

↘ ↙

↓
=

{}

{ρUU} {}

{ρUW }

{ρU∅}

↙ ↘

↘ ↙

↓

It acts on morphisms like this: for a morphism ρVW : V →W ,

HomK(U, ρVW ) : HomK(U, V ) → HomK(U,W )
ρUV 7→ ρVW ◦ ρUV .

For each U ∈ K, Sub(HomK(U,−)) is the set of subfunctors of HomK(U,−),
i.e., of those S : K → Set such that: 1) for each V ∈ K we have S(V ) ⊆
HomK(U, V ), and 2) S is a functor. Note that

{}

{ρUU} {}

{}

{ρU∅}

↙ ↘

↘ ↙

↓

is not a functor; using the language of section 11, if s ∈ ΣS then all the points
of s · Ω are forced to belong to ΣS too — otherwise S can’t be a functor.

We can use the following notation for an element S of Sub(HomK(U,−)):
a ‘·’ marks each object of K, e.g. X, for which HomK(U,X) = {}; in the
other positions we use ‘0’s and ‘1’s to denote the characteristic function of

S � HomK(U,−). So
·

0 ·
1
1

is this subfunctor of HomK(U,−):

{}

{} {}

{ρUW }

{ρU∅}

↙ ↘

↘ ↙

↓
�

{}

{ρUU} {}

{ρUW }

{ρU∅}

↙ ↘

↘ ↙

↓

Let’s write ΩK for the functor from K to Set whose action on objects is

U 7→Sub(HomK(U,−)); so ΩK(U) =
{ ·

0 ·
0
0
,
·

0 ·
0
1
,
·

0 ·
1
1
,
·

1 ·
1
1

}
. We can picture ΩV and ΩK

as:

{0 ·0 , 0 ·1 , 1 ·1 }

{· ·0 , · ·1 }
��999999
{· 00 , · 01 , · 11 }

{· ·0 , · ·1 }
��������

{ 0
00
0
0
,

0
00
0
1
,

0
00
1
1
,

0
01
1
1
,

0
10
1
1
,

0
11
1
1
,

1
11
1
1

}
{ ·

0 ·
0
0
,
·

0 ·
0
1
,
·

0 ·
1
1
,
·

1 ·
1
1

}������

{ 0
00
0
0
,

0
00
0
1
,

0
00
1
1
,

0
01
1
1
,

0
10
1
1
,

0
11
1
1
,

1
11
1
1

}
{ ·
· 0
0
0
,
·
· 0
0
1
,
·
· 0
1
1
,
·
· 1
1
1

}��????{ ·
0 ·
0
0
,
·

0 ·
0
1
,
·

0 ·
1
1
,
·

1 ·
1
1

}
{ ·
· ·
0
0
,
·
· ·
0
1
,
·
· ·
1
1

}��????

{ ·
· 0
0
0
,
·
· 0
0
1
,
·
· 0
1
1
,
·
· 1
1
1

}
{ ·
· ·
0
0
,
·
· ·
0
1
,
·
· ·
1
1

}������{ ·
· ·
0
0
,
·
· ·
0
1
,
·
· ·
1
1

}
{ ·
· ·
·
0
,
·
· ·
·
1

}��
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[The action on objects of Ω is graphically obvious, but how do we formalize
it?]

[Show that these ‘Ω’s obey the axiom]
[Show how to represent Ωj and J graphically for a modality j]

17 Étale spaces

On the top square: the adjunction Λ a Γ;
On the lower | · |: the counit εY (etalification),
and the unit ηP (sheafification).

⋃
X3x

colim
x←U

P (U)

↓
X

 (Uop 7→ P (U))oo Λ �


⋃
X3x

colim
x←U

P (U)

↓
X



Y↓
X


��

(Uop 7→ P (U))

(Uop 7→ {s : U → Y })
��

Y↓
X

 (Uop 7→ {s : U → Y })�
Γ

//

oo //


⋃
X3x

colim
x←U

{s : U → Y }

↓
X



Y↓
X


εY

��

(Uop 7→ P (U))

(Uop 7→ {s : U →
⋃
X3x

colim
x←U

P (U)})

ηP

��

Top/X SetO(X)opoo Λ
Top/X SetO(X)op

Γ
//

If X = V = ••• then this gives an adjunction

between Top/V and SetO(V)op = SetK.
I know how the sheafification η acts on the evil presheaf,
but not yet how Λ, Γ, ε work.

↓ α = 10
1 = U

↓ β = 01
1 = V

↓ γ = 00
1 = W

↑↓ α =↑ U =
1

10
0
0

= {X,U}

↑↓ β =↑ V =
1

01
0
0

= {X,V }
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↑↓ γ =↑W =
1

11
1
0

= {X,U, V,W}
colim
α←U ′

P (U ′) = colim
(↑↓α)3U ′

P (U ′) = colim
(↑U)3U ′

P (U ′) = P (U)

colim
β←U ′

P (U ′) = colim
(↑↓β)3U ′

P (U ′) = colim
(↑V )3U ′

P (U ′) = P (V )

colim
γ←U ′

P (U ′) = colim
(↑↓γ)3U ′

P (U ′) = colim
(↑W )3U ′

P (U ′) = P (W )

Note that if x ∈ R then ↑↓ x is the filter of neighbourhoods of x, which is
not a principal filter; the operation ‘↑↓’ cannot be factored as ↑ (↓ x).

18 Geometric Morphisms

Every continuous map of
Every continuous map of finite dags induces...

The “anti-discretization” map, a :
•••
•••
→ •••
•••, is continuous, and it induces

a map :O(••••••)→ O(
•••
•••

) = P(
•••
•••

)

19 The “right example”

Is there still something that I want to save from this section?
[Byers’s] idea of “right example” is very close to the idea of “archetypal

model” in [Och10], but an underlying theme in [Och10] is that internal diagrams,
downcasing types and archetypal models can be used to formalize the idea of
“right example”, in two senses: 1) it should be possible to work using a notation
that suggests that we are in the archetypal case, and then, by a “dictionary
trick”, lift our proofs to the general case; 2) ...

Even though sheaves on ZDAGs are much simpler than general sheaves (I
will show, in one of the yet-unwritten sections, how the colimits that are used
to define spaces of germs can be calculated explicitly on presheaves on ZDAGs),
most of “basic sheaf theory” can be defined on sheaves and ZDAGs and then
lifted to the general case... However, I still need to define what is “basic sheaf
theory” — which definitions and proofs are conatined in it... This is a work in
progress!

(Many ideas here came from [Sim01])
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