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Chapter 1

Introduction

Downcasing types (working draft, 2009nov16)

Eduardo Ochs

LLaRC, PURO/UFF

eduardoochs@gmail.com

http://www.uff.br/llarc/

http://angg.twu.net/

The latest version can be found at:

http://angg.twu.net/LATEX/2009unilog-dnc.pdf

Note: this is a first, very rough working draft of a paper on Downcasing
Types... let me explain how it came into being. When I started writing down
my material about DNC (from “DowNCasing”) a few months ago I was with the
impression that it would be too hard to publish it as an article in a journal —
because of the reasons in section 1.2 — but it occurred to me that I could take
an alternative route: to write first a technical report, mainly for a very specific
audience — for the people in my research group in Rio das Ostras and for few
other groups in Rio de Janeiro (and there are no categorists in the strict sense
here!), with all details and all dictionaries of notations, to help these people
understand some papers and books in CT...

Then another excuse to finish it appeared: I was trying to help Valeria de
Paiva — whom I knew from several events in Logic in Brazil, and who had even
watched my very first international talk (see http://angg.twu.net/math-b.
html#PhD) — to find out how she could become a visiting researcher in Brazil
for a few months, and at one point she asked casually if I wasn’t going to submit
anything to the session on Categorical Logic at UNILOG’10, where she was one
of the organizers... I wrote the first version of the abstract — not the one
below —, asked for comments (“what she thought the referees could complain
about”, etc, as we still had ten days before the deadline), and she pointed out
that I made liftings look too easy, that the notion of downcasing — and its
non-triviality — didn’t make enough sense from what I wrote, and a few other
things that don’t matter now...
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CHAPTER 1. INTRODUCTION 4

Then, in the space of little more than one week, I was able to write all this
down (with some bits of cut-and-paste from past seminar notes, of course). It
doesn’t matter exactly what Valeria said; in some situations what really matters
is what we do with what other people say to us — and we both wanted these
ideas to be written down, and now they are much closer to being in a readable
form than they were before...

[Expect big changes in the text below over the next few weeks...]

1.1 Abstract

(Taken from: http://angg.twu.net/LATEX/2009unilog-abs1.pdf)

When we represent a category C in Type Theory it becomes a 7-uple:
(C0,HomC, idC, ◦C; assocC, idLC, idRC), where the first four components are
“structure” and the last three are “properties”.

We call the “structure” components the “syntactical part”, and the “prop-
erties” components the “logical part”. A protocategory is a 4-uple (C0,HomC,
idC, ◦C) — just the “syntactical skeleton” of what a category is, without the
components that talk about equality of morphisms. By splitting at the right
places the uples that represent functors, natural transformations, isos, adjunc-
tions, limits, etc, we define proto-functors, proto-NTs, and so on.

The operation that takes entities and returns the corresponding proto-entities
behaves as a projection, and we say that it goes from the “real world” — where
everything has both a “syntactical” and a “logical” part — to the “syntactical
world”, where only the syntactical parts have been kept.

The opposite of to project is to lift. We may start with a proto-something,
s−, in the syntactical world, and try to lift it to an s in the real world that
projects into s−. Meta-theorems about lifting are hard to obtain, but we know
many interesting liftings — each object r of the (projectable fragment of the)
real world projects to an proto-object r− that can be lifted back to r — and we
can start by studying them to understand how liftings behave.

Proto-objects — even proto-proofs — are especially amenable to being rep-
resented diagrammatically, and there is a simple way to attribute a precise
meaning to each entity — each node, arrow, etc — appearing in these dia-
grams. We will show how to formalize two such diagrammatic proofs — the
Yoneda Lemma and one of the weakest monadicity theorems — as terms in
Coq.

For most applications in Categorical Semantics one further trick is needed:
“downcasing types”, that lets us name entities by what they represent in the
“archetypical case”. For example, in a hyperdoctrine, if P is an object over
B × C and f : A → B then Beck-Chevalley Condition for ∀ says that the
natural morphism from f∗ΠπBCP to ΠπAC (f × C)∗P should be an iso. In the
archetypical hyperdoctrine, Sub(Set), P “is” a subset { (b, c) ∈ B×C | P (b, c) }
of B × C, and both f∗ΠπBCP and ΠπAC (f × C)∗P “deserve the name” { a ∈
A | ∀c ∈ C.P (fa, c) }. The downcasing of P is b, c||P , and the BCC map
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CHAPTER 1. INTRODUCTION 5

becomes a map a||∀c.P 7→ a||∀c.P that is not the identity, whose construction
can be read out from a diagram.

Roughly, what is the happening is the following: the formal definition of
hyperdoctrine generalizes some of the structure of Sub(Set); with our way of
interpreting diagrams we can define all this structure diagrammatically, in a
notation that “suggests” that we are in Sub(Set), i.e., “in the archetypical
case”, and then we can “lift” these definitions to diagrams with the same two-
dimensional structure, but in any of the standard notations.

Several categorical theorems become quite clear when we find “archetypi-
cal diagrams” for their (proto-)proofs, and then we lift those to standard nota-
tions; we will show some examples from Lawvere’s “Adjointness in Foundations”
(1969) and “Equality in Hyperdoctrines” (1970) papers.

1.2 There Are no Theorems in This Paper

...because the things that we usually call “theorems” in Category Theory belong
to the real world — they are a construction plus something more.

Take for example the Yoneda Lemma. It says that given a functor R : B→
Set and an object B of B we have a bijection between the set RB and the set
of natural transformations C .→ ((B → C) → RC). Here we are working in
the syntactical world only — we mention liftings, but we don’t do any liftings
explicitly, and so what we get is just the projection of that bijection, which is
a proto-iso between RB and the set of proto-NTs C .→ ((B → C) → RC).
Usually a “theorem” involving a such construction would have to either show
that it is always a bijection, or to show a case where it is not a bijection.

What we do have here is the definition of the two worlds (mostly via exam-
ples, but whatever...), of the projections, of the liftings, some ideas of how to
work with this splitting of worlds, and examples.
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Chapter 2

The syntactical world

2.1 Categories

[Typeset this from my handwritten notes]

2.2 Functors

2.3 Natural Transformations

2.4 Isos

2.5 Epis and Monics

2.6 Adjunctions

If L and R are functors going in opposite directions between two categories, say,

B oo
L

R
//A

then a proto-adjunction, L a R, is an 8-uple,

(A,B, L,R, [, ], η, ε)

6



CHAPTER 2. THE SYNTACTICAL WORLD 7

that we draw as:

LRB

B

εB

��

A

RLA

ηA

��

LA Aoo �LA

B

f[

��

LA

B

g

��

A

RB

f

��

A

RB

g]

��

oo �� //

B RB� //

B Aoo L
B A

R
//

There is some redundancy in this definition, as we may reconstruct some of
the entities [, ], η, ε in terms of the other ones:

LA Aoo �LA

B

f[ :=
Lf ;εB

��

LA

LRB

Lf

��

A

RB

f

��

oo �

LRB RBoo �LRB

B

εB

��
A

RLA

ηA

��
LA RLA� //LA

B

g

��

RLA

RB

Rg

��

A

RB

g] :=
ηA;Rg

��

� //

B RB� //B RB
εB
//

LRB RBoo �LRB

B

εB :=

idRB
[

��

RB

RB

idRB

��
B RB� //

oo �

LA Aoo �LA

LA

idLA

��

A

RLA

ηA :=

idLA
]

��
LA RLA� //

� //

2.7 Monads

A protomonad for a proto-endofunctor T : A→ A is a 4-uple:

(A, T, η, µ)

that we draw as:
A

ηA // TA oo
µA

TTA

A proto-comonad for a proto-endofunctor S : B→ B is a 4-uple:

(B, S, ε, δ)

that we draw as:

B oo
εB

SB
δB // SSB
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CHAPTER 2. THE SYNTACTICAL WORLD 8

Each proto-adjunction induces both a proto-monad and a proto-comonad.
We draw all these together as:

LRLRB

LRB

OO

δB

LRB

B

εB

��

A

RLA

ηA

��
RLA

RLRLA

OO

µA

LA Aoo �
LA

B

f[

��

LA

B

g

��

A

RB

f

��

A

RB

g]

��

oo �� //

B RB� //

B Aoo L
B A

R
//

We define µA := R(idRLA[) and δB := L(idLRB]):

idRLA : RLA→ RLA

idRLA[ : LRLA→ LA
[

µA := R(idRLA[) : RLRLA→ RLA
R

idLRB : LRB → LRB

idLRB] : RB → RLRB
]

δB := L(idLRB]) : LRB → LRLRB
L

We have seen how a proto-adjunction induces a proto-monad; now we will
see how a proto-monad induces two proto-adjunctions.

2.7.1 The Kleisli Category of a Monad

The Kleisli proto-category of a proto-monad (A, T, η, µ) is the proto-category:

AT := ((AT )0,HomAT
, idAT

, ◦AT
)

where (AT )0 is equal to A0, but we write the objects of (AT )0 in a funny way:
an object A ∈ A becomes

[A //__ TA]

when we regard it as an object of (AT )0.
A morphism in HomAT

([A //__ TA], [C //__ TC]) is just a map f : A → TC
in HomA(A, TC). We write it as [f ] : HomAT

([A //__ TA], [C //__ TC]) to stress
that its (formal) type is different from f .

The identity operation, idAT
, is the η (the “unit”) of the monad in disguise:

idAT
([A //__ TA]) := [ηA]

Note that:
A : A0

ηA : A→ TA

[ηA] : [A //__ TA]→ [A //__ TA]
idAT

([A //__ TA]) : HomAT
([A //__ TA], [A //__ TA])

ren
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CHAPTER 2. THE SYNTACTICAL WORLD 9

The composition, ◦AT
, needs a trick: if f : A → TC and g : C → TE then

[f ]; [g] := [f ;Tg;µE ]. In diagrams:

[A //__ TA]

[A //__ TA]

id=[ηA]

��

A

TA

ηA

��??????????

[A //__ TA]

[C //__ TC]

[f ]

��
[C //__ TC]

[E //__ TE]

[g]

��

[A //__ TA]

[E //__ TE]

[f ];[g] :=
[f ;Tg;µE ]

��

A

TC

f

��??????????

C TC//___C

TE

g

��?????????? TC

TTE

Tg

��??????????

E TE//___ TE TTEoo
µE

The dashed arrow in, say, [A //__ TA], is to suggest three things:
that morphisms in AT follow the direction of the ‘ //__ ’,
that a morphism A→ TA is not part of the definition of an object [A //__ TA],
that the ‘ //__ ’ is the ghost of the unit of the monad — the unit would go

from A to TA, but it is not used in the definitions; nevertheless, its memory
remains.

We can draw the Kleisli (proto-)adjunction as:

[A //__ TA] Aoo �[A //__ TA]

[C //__ TC]

f[:=[f ]

��

[A //__ TA]

[C //__ TC]

[g]
��

A

TC

f

��

A

TC

[g]]:=g
��

oo �� //

[C //__ TC] TC
� //

AT Aoo LT
AT A

RT

//

[TTC //__ TTTC]

[TC //__ TTC]

OO

µ?

[TC //__ TTC]

[C //__ TC]

γ

��

A

TA

ηA

��
TA

TTA

OO

µA

2.7.2 The Eilenberg-Moore Category of a Monad

The Eilenberg-Moore proto-category for a proto-monad (A, T, η, µ) is:

AT := ((AT )0,HomAT , idAT , ◦AT )

2009unilog-dnc April 2, 2010 16:26



CHAPTER 2. THE SYNTACTICAL WORLD 10

where an object of (AT )0 is a pair (A,α) (a “proto-algebra”), that we write as:

[A oo α TA]

We use a non-dashed arrow, ‘ oo ’, to stress that the map α : HomA(TA,A) is
part of the definition of the object.

A (proto-)morphism f : [A oo α TA] → [C oo
γ
TC] is just a morphism f :

HomA(A,C). The identity idAT and the composition ◦AT are defined in the
obvious way (inherited from A).

The Eilenberg-Moore adjunction can be drawn as:

[TA oo
µA

TTA] Aoo �[TA oo
µA

TTA]

[C oo
γ
TC]

f[:=Tf ;γ

��

[TA oo
µA

TTA]

[C oo
γ
TC]

g ��

A

TC

f

��

A

TC

g]:=ηA;g
��

oo �� //

[C oo
γ
TC] TC� //

AT Aoo LT

AT A
RT

//

[TTC oo
TTγ

TTTC]

[TC oo
Tγ

TTC]

OO
µ?

[TC oo
Tγ

TTC]

[C oo
γ
TC]

γ

��

A

TA

ηA

��
TA

TTA

OO

µA

where [two triangles showing the transpositions]:

2.7.3 The Comparison Theorem

If B oo
L

R
//A and B′ oo

L′

R′
//A are two proto-adjunctions — the full definition with

‘[’s, ‘]’s, ‘η’s and ‘ε’s will not be relevant now — then a proto-comparison from
L′ a R′ to L a R is just a proto-functor F : B′ → B,

B′

B

F

��

B′

A

gg
L′

OOOOOOOOOOB′

A
R′ ''OOOOOOOOOO

B

A

ww

L
ooooooooooo

B

A

R

77ooooooooooo

such that (L′;F )0 = L0 and (F ;R)0 = R′0, i.e., two of the triangles in the
figure commute on objects (remember that in the syntactical world equality of
morphisms rarely matters). Note that we only need to care for the objects of
B that are images of objects in B′.
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CHAPTER 2. THE SYNTACTICAL WORLD 11

Now start with a proto-adjunction, B oo
L

R
//A, build its protomonad,

(A, T, η, µ) = (A, (R;L), η, (λA:A0.R(idRLA[))),

and build its Kleisli proto-adjunction AT
oo LT

RT

//A, and its Eilenberg-Moore proto-

adjunction, AT oo L
T

RT
// A. It turns out that we have proto-comparison functors

FT : AT → B and FT : B→ AT :

AT

B

FT

�������������

B

AT

FT

��???????????

AT

A

__

LT

???????????AT

A

RT

��???????????

B Aoo L
B A

R
//

AT

A

��

LT

�����������

AT

A

RT

??�����������

[A //__ RLA]

[C //__ RLC]

[RLA oo
µA

RLRLA]

[RLC oo
µC

RLRLC]

A

RLC
��

LA

LC
��

[A //__ RLA]

[C //__ RLC]
��

[RLA oo
µA

RLRLA]

[RLC oo
µC

RLRLC]

��

A

``

�
BBBBBBBBBBBBBBB

RLC

�

  BBBBBBBBBBBBBB

LA Aoo �

LC RLC
� //

A

��

B
�������������

RLC

B

AA�������������

LA

>

��~~~~~~~~~~~~~~

LC

>

��~~~~~~~~~~~~~~

LAz

��:::::::::::::

LCz

��:::::::::::::

aa

!!BBBBB

oo //

��
AA����

where the functor FT acts like this on morphisms,

[f ] : [A //__ RLA]→ [C //__ RLC]
f : A→ RLC

f [ : LA→ LC

and the functor FT , that appears as LA 7→ [RLA oo
µA

RLRLA] in the diagram,

is actually B 7→ [RB ooR(idRB
[)
RLRB]:

A

LA
L

RLA
R

RLA→ RLA
id

LRLA→ LA
[

R(idRLA[) : RLRLA→ RLA
R

B

RB
R

RB → RB
id

LRB → B
[

R(idRB[) : RLRB → RB
R

We need to impose the condition ∀A:A0.µA = R(idRLA[), but this holds in
any (non-proto-) category.
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CHAPTER 2. THE SYNTACTICAL WORLD 12

2.7.4 Monadicity

[Define proto-equivalence of categories]
[Define tripleable functor]
[Give examples?]
[Define proto-equalizer]
[Define preservation and reflection of proto-equalizers]
[Prove Theorem 1 of Beck’s thesis (p.8 of the reprint)]
http://www.tac.mta.ca/tac/reprints/articles/2/tr2abs.html

2.7.5 Beck’s Lemma

2.8 Universals

In an adjunction, each morphism A → RLA induces a natural transformation
B

.→ ((A→ B)→ (A→ RB)), by:

A

RLA

f

��
LA RLA

� //LA

B

g

��

RLA

RB

Rg

��

A

RB

f ;Rg

��

� //

B RB� //

B Aoo L
B A

R
//

and for f = ηA the natural transformation is a natural iso. The notion of
“universal” generalizes this, and makes sense when we only have the functor
R : B→ A.

A preuniversal for a functor R : B→ A is a triple (A : A0, B : B0, f : A→
RB), that we will draw as:

A

RB

f

��
B RB

� //

or as (A,LA, f) i.e.,
A

RLA

f

��
LA RLA� //

where the ‘LA’ is just a “long name” for an object of B — we don’t have a
functor L anymore, so L is just a letter.
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A universal is a preuniversal plus “universality”, where universality is the
assertion that the induced natural transformation is a natural iso. In the syn-
tactical world universality looks more like extra structure than like a property:
a (proto-)universal is a (proto-)preuniverse (A,LA, f : A→ RLA) plus a proto-
inverse for its induced natural transformation.

The idea — let me make it clearer — is that in the syntactical world we
“prove” than an (A,LA, f) is a universal by constructing a proto-inverse for
it, where the proto-inverse is an operation that behaves “syntactically” (i.e., in
the types) as an inverse to the natural transformation, and checking that this
proto-inverse is a real inverse is something that is left to a later stage — the
“lifting”.

An example should make this clearer. Any diagram A
i→ C

i′← B (mnemonic:
C will “deserve the name” A+B, as we will see in the next section) induces a
natural transformation X

.→ ((C → X)→ (A→ X)× (B → X)), by:

(A,B)

(C,C)

(i,i′)

��
C (C,C)� //C

X

g

��

(C,C)

(X,X)

(g,g)

��

(A,B)

(X,X)

(i;g,i′;g)

��

� //

X (X,X)� //

Set Set× Setoo (+)

Set Set× Set
∆
//

[...]
[X .→ (Hom(C,X)→ Hom(A,X)×Hom(B,X))]
[X .→ (Hom(C,X)→ Hom((A,B), (X,X))]
[X .→ (HomSet(L(A,B), X)→ HomSet×Set((A,B), RX)]
[...]
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CHAPTER 2. THE SYNTACTICAL WORLD 14

2.9 The Yoneda Lemma

(η ↔ ]) in adjunctions: a

aLR

_
η ��

aL aLR+3

  aL

c

_

��

a

cR

_
��c

• // �(iso)//

oo //

Lemma on preuniversals: a

bR

_
��

b bR+3

  b

c

_

��

a

cR

_
��c

• // � //

oo //

_

��
Lemma on preuniversals: a

bR

_
��

b bR+3

  b

c

_

��

a

cR

_
��c

• // � //

oo //

Yoneda Lemma: ∗

bR

_
��

b bR+3

  b

c

_

��

∗

cR

_
��c

• // � //

oo //

 ∗

bR

_
��

b bR+3



bR

OO

��

 b

c

_

��

∗

cR

_
��c

• // � //


 b

c

_

��c
• // cR

� //


OO

��

_

��
Yoneda Lemma: ∗

bR

_
��

b bR+3

  b

c

_

��

∗

cR

_
��c

• // � //

oo //

 ∗

bR

_
��

b bR+3



bR

OO

��

 b

c

_

��

∗

cR

_
��c

• // � //


 b

c

_

��c
• // cR

� //


OO

��

Corollary: ∗

a7→b

_
��

b a 7→b+3

  b

c

_

��

∗

a 7→c

_

��c
• // � //

oo //

 ∗

a7→b

_
��

b a 7→b+3



a7→b

OO

��

 b

c

_

��

∗

a 7→c

_

��c
• // � //


 b

c

_

��

a

c

_

��c
• // � //


OO

��

_

��

(η ↔ ]) in adjunctions: a

aLR

_
η ��

aL aLR+3

  aL

c

_

��

a

cR

_
��c

• // �(iso)//

oo //

Definition of universal arrow: a

bR

_
univ ��

b bR+3

  b

c

_

��

a

cR

_
��c

• // �(iso)//

oo //

�

''PPPPPPPPPP

Definition of universal arrow: a

bR

_
univ ��

b bR+3

  b

c

_

��

a

cR

_
��c

• // �(iso)//

oo //

Definitions of universal element
and representable functor: ∗

bR

_
univ ��

b bR+3

  b

c

_

��

∗

cR

_
��c

• // �(iso)//

oo //

 ∗

bR

_
univ ��

b bR+3



bR

(universal
element)

OO

��

 b

c

_

��

∗

cR

_
��c

• // �(iso)//


 b

c

_

��c
• // cR

�(iso)//


(R is representable

and is represented by B)

OO
��

_
��
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CHAPTER 2. THE SYNTACTICAL WORLD 15

2.10 Products

2.11 To Deserve a Name

In a diagram A
i→ C

i′← B we say that the ‘C’ deserves the name ‘A+B’, and

that i and i′ deserve the names ι and ι′, when A
i→ C

i′← B is a coproduct
diagram.

[Similarly for products, pullbacks, etc...]
We say that the ‘C’ is a candidate for ‘A + B’ when... [This is similar to

stating: “Proposition: Foo”, and then proceeding to a proof of Foo.]

2.11.1 Mad Names

In section ?? we hint to a definition for “downcasing” and “uppercasing” that
is much stricter than the one that is really useful...

“Downcasing” and “uppercasing” should not be precise syntactical transfor-
mations on names! Instead, what works well is to keep a set of loosely-defined
guidelines for downcasings and uppercasing, that need not be followed very
rigorously, and to keep a “dictionary of uppercasings and downcasings” with
several entries like “a′ 7→ b : A → B’, ‘f ≡ a 7→ b’ (I use ‘≡’ to mean “change
of notation”, usually from standard to downcased)... if this dictionary can be
reconstructed from very hints, the better.

There is nothing — apart from the desire to think clearly and to communi-
cate our thoughts — that prevents us, in the formalization of some construction
or theorem in Coq with LATEX chunks (section ??), from using “mad names”
like, say, ‘$%

#’ instead of ‘a 7→ b’. The language of long names and downcas-
ings presented here is not like an internal language, like the ones that we use
for toposes (see [BellLST], [LambekScott], etc); rather, it is more like half of
an internal language: a corpus of sentences and diagrams, as they are “spo-
ken”, but without a fixed grammar — we’ve split the use of a language from its
formalization.

By the way, we can use the idea of “diagrams as dictionaries between nota-
tions” (see sec. ??) to change from the n-th attempt to a good notation to the
(n+ 1)-th attempt; the diagrams keep the same shape...
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CHAPTER 2. THE SYNTACTICAL WORLD 16

2.12 Terminals

2.13 Exponentials

2.14 Cartesian Categories

2.15 Cartesian Closed Categories

2.16 Indexed Categories, Fibrations, Hyperdoc-
trines

2.16.1 Subobjects

2.16.2 Indexed Categories

(id; f)∗P

id∗f∗P

OO

��
id∗f∗P

f∗P

OO

��

P

(id; f)∗P

**

jjUUUUUUUUUUUUUUU

(id; f)∗P

P

jj

�UUUUUUUUUUUUUUU

id∗f∗P f∗Poo � f∗P Poo �

A A
id // A B

f //

(f ; id)∗P

f∗id∗P

OO

��
f∗id∗P

f∗P

OO

��

id∗P

P

OO

��

(f ; id)∗P

P

jj

�UUUUUUUUUUUUUUU

f∗id∗P id∗Poo � id∗P Poo �

f∗P Poo �

A B
f // B B

id //

(f ; g;h)∗P

(f ; g)∗h∗P

OO

��
(f ; g)∗h∗P

f∗g∗h∗P

OO

��
f∗g∗h∗P

f∗(g;h)∗P

OO

��
f∗(g;h)∗P

(f ; g;h)∗P

OO

��

g∗h∗P

(g;h)∗P

OO

��

(f ; g;h)∗P

P

ii

�SSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

(f ; g)∗h∗P

h∗P

kk

�WWWWWWWWWWWWWWWWW

f∗g∗h∗P g∗h∗Poo � g∗h∗P h∗Poo � h∗P Poo �

f∗(g;h)∗P (g;h)∗Poo � (g;h)∗P

P

tt

)iiiiiiiiiiiiiii

(f ; g;h)∗P

P

vv

.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

A B
f // B C

g // C D
h //
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CHAPTER 2. THE SYNTACTICAL WORLD 17

2.16.3 Cartesian Morphisms

A “vee” in a category A is a pair of maps (h : A → C, g : B → C) with the
same codomain; we will draw vees as:

A

C
h ��77777 B

C

g�������
or as:

A

C

h

&&MMMMMMMMM

B C
g
//

.

A completion for a vee (h : A → C, g : B → C) is a map f : A → B such
that f ; g = h. Let’s draw the set of all completions for the vee (h : A → C, g :
B → C) as this:

A

C

h

&&MMMMMMMMM

B C
g
//

A

B
f ��7

7
7

.

The standard notation for that, using slice categories (see [TTT], p.3, or
[Awodey], p.15), would be:

HomA/C(h : A→ C, g : B → C).

A functor F : A→ B takes vees in A to vees in B,

(h : A→ C, g : B → C) 7→ (Fh : FA→ FC, Fg : FB → FC)

and induces functions from sets of completions to sets of completions:

A

C

h

&&MMMMMMMMM

B C
g
//

A

B
f ��7

7
7

FA

FC

Fh

&&MMMMMMMM

FB FC
Fg
//

FA

FB
f ′ ��7

7
7

��

{ f : A→ B | f ; g = h }

{ f ′ : FA→ FB | f ′;Fg = Fh }
��

f

Ff

_

��

When a map


A

C

h

&&MMMMMMMMM

B C
g
//

A

B
f ��7

7
7

→


FA

FC

Fh

&&MMMMMMMM

FB FC
Fg
//

FA

FB
f ′ ��7

7
7

 is a bijection there

is a unique completion f : A→ B corresponding to each completion f ′ : FA→
FB. We will then say that this f is the lifting of the corresponding f ′, and we
will say that the vee (h, g) has unique liftings (for the functor F ; but let’s think
of F as fixed).
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When a map g : B → C has the property that all vees of the form (h, g) have
unique liftings — note that this must hold for all possible choices of domains for
h, i.e., now the ‘A’ is free — then we will say that g is cartesian. This property
is not so rare as it might seem.

Fact. If F : Set→ → Set is the “codomain” functor, Cod, then pullbacks in
Set — regarded as morphisms in Set→ — are cartesian morphisms for F .

The diagram below is the core of the proof. Each completion (f ′, f) “above”
is mapped to a completion f “below”; each completion f below lifts to a com-
pletion (〈a; f, h′〉, f) above.A′

a↓

A


B ×C C ′π↓

B

〈a;f,h′〉
f

##GGGG B ×C C ′π↓

B

 C ′

c↓

C


π′

g

//

A′

a↓

A


C ′

c↓

C


h′

h

**TTTTTTTTTTTTTTTTTTTTTT

A

B

f

##GGGGGGGGGGGG

B C
g

//

A

C

h

**TTTTTTTTTTTTTTTTTTTTTTTTTT

2.16.4 Cleavages

Now let’s clean up the notation. The functor F : A → B will become the
“projection functor” p : E→ B, going from the “entire category” E to the “base
category”. Projection functors are just normal functors, but they are downcased
in a funny way, as we shall see soon.

The objects of B will be called A, B, C, D, . . .. the objects of E will be called
P , Q, R, S, . . .; in the archetypal case — namely, p ≡ Cod : Sub(Set) → Set
— they will stand for propositions over sets. For example, an object Q of E
over an object B of B will stand for the subobject { b ∈ B | Q(b) }� B:

Sub(Set)

Set

_
p≡Cod

��

Q ≡ ({ b ∈ B | Q(b) }� B)

pQ = CodQ = B

_

��

An object Q of E is said to be over its projection pQ; similarly, morphisms
in E are said to be over their images. For each object B of B the subcategory of
E formed by the objects and morphisms over B and idB is called the fiber over
B, and denoted by EB . Also, we will tend to draw objects and morphisms of E
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CHAPTER 2. THE SYNTACTICAL WORLD 19

over their images and omit the funtor arrows for p. So

Q R
g′ //

B C
g //

is shorthand for
Q R

g′ //

B = pQ C = pR
g=pg′ //

Q

B = pQ

_

��

R

C = pR

_

��

E

B

p
��

.

Morphisms in a fiber are said to be vertical.

A cleavage for a projection funtor p is a pair of operations, (·∗, ·), that
produces, for each morphism g : B → C in B and for each R in E over C, a
cartesian morphism gR : g∗R→ R over g.

A cartesian lifting for g : B → C at an object R over C is a cartesian
morphism Q→ R over g with codomain R. A cleavage (·∗, ·) chooses a particular
cartesian lifting for each pair (R, g : B → pR).

A cloven fibration is a projection functor p : E → B plus a cleavage (·∗, ·).
A fibration is slightly less than this: a projection functor p : E → B plus the
guarantee that each pair (R, g : B → pR) has at least one cartesian lifting.

We will not use “plain” fibrations here; cleavages are too convenient.

The following fact may at first look too technical to be useful.
Fact (technical). In a cloven fibration p : E → B, for each object R in E

the “projection” operation pR : E/R → B/pR is left adjoint to the “cartesian
lifting” operation ·R : B/pR→ E/R. In diagrams:

E/R

B/pR

pR

��

E/R

B/pR

OO

·R

P

g∗R
f ′ ��?

?
?

g∗R R
gR

//

P

R

h′

((QQQQQQQQQQQQ

pP

B
f ��?

?
?

B pR
g
//

pP

pR

ph′

((QQQQQQQQQQQ

(P h′→ R) (g∗R
gR→ R)

f ′ //(P h′→ R)

(pP
ph′→ pR)

_
pR

��

(g∗R
gR→ R)

(B
g→ pR)

_

·R
��

(pP
ph′→ pR) (B

g→ pR)
f
//

_
[
��

OO
]

_

The transposition ‘[’ is a familiar operation: it take each f ′ to its projection
pf ′. The inverse transposition, ‘]’, is something new, and extremely important
— it factors h′ through the cartesian morphism gR, returning a morphism f ′

over f .
In a vee (h′ : P → R, g′ : Q→ R) over (h : A→ C, g : B → C) in which g′

is cartesian each completion f : A→ B of the lower vee lifts in a unique way to
a completion f ′ : P → Q of the upper vee. When the upper vee is clear from
the context we will denote this f ′ by f ], and we will call f ] the “factorization
of h′ through g′ (over f)”. Note that here g′ is any cartesian morphism — not
necessarily one returned by the cleavage.
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P

Q
f] ��?

?
?

Q R
g′
//

P

R

h′

((QQQQQQQQQQQQ

A

B
f ��?????

B C
g
//

A

C

h

((QQQQQQQQQQQQ

For any morphism g : B → C in the base, the operation R 7→ g∗R given by
the cleavage is the action of a functor on objects. To construct the action of the
functor g∗ : EC → EB on morphisms we use the factorization ‘]’: if r : R′ → R is
a morphism in EC , then g∗r : g∗R′ → g∗R is the factorization of gR′ ; r through
gR (over idB).

g∗R′ R′
gR′ //g∗R′

g∗R

g∗R :=

idB
]

��

R′

R

r

��
g∗R R

gR //

B C
g //

Each g∗ turned out to be a functor; it turns also out that each g is a natural
transformation. More precisely: for each morphism g : B → C in the base the

operation R 7→ (g∗R
gR→ g) is the action of a natural transformation g from

g∗ : EC → EB to idEC : EC → EC .

A proto-vee is just a vee.
A proto-completion for a vee (h : A → C, g : B → C) is just a morphism

f : A→ B.
A morphism f ′ : P → Q is proto-above a morphism f : A → B if pP = A

and pQ = B. This is like being above, but here we check only the domain and
the codomain; the condition pf ′ = f has been dropped.

The condition of “having unique liftings” for a vee becomes an operation in
the syntactical world: a proto-inverse for the

For a (proto-)vee
A vee with proto-unique liftings is a vee (h : A → C, g : B → C) plus an

operation that takes each proto-completion f ′ of (Fh : FA→ FC, Fg : FB →
FC) to a proto-completion f of (h : A→ C, g : B → C). Note that there may
be many more proto-completions of (Fh, Fg) than completions. We may draw
a proto-unique lifiting for (h, g) as

A

C

h

&&MMMMMMMMM

B C
g
//

A

B
f ��7

7
7

←


FA

FC

Fh

&&MMMMMMMM

FB FC
Fg
//

FA

FB
f ′ ��7

7
7
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i.e., as a proto-inverse for the natural arrow ‘→’ from the first set of proto-
completions to the second.

A proto-cartesian arrow g : B → C is an arrow g : B → C plus an operation

(A, A h→ C) 7→ (


A

C

h

&&MMMMMMMMM

B C
g
//

A

B
f ��7

7
7

←


FA

FC

Fh

&&MMMMMMMM

FB FC
Fg
//

FA

FB
f ′ ��7

7
7

)

that takes the each possible other leg for the vee and returns a corresponding
proto-unique lifting.

A proto-projection functor is just a proto-functor.
A proto-cleavage for a proto-projection functor p : E→ B
[Missing: proto-above]./

2.16.5 Change-of-Base Functors

2.16.6 The Logical Structure in Each Fiber

2.16.7 Preservations

In the semi-logical notation, if f ≡ (a, b 7→ a), then P∧\, P ��\ e Frob\ are:

f ≡ (a, b 7→ a) O[a;P ] O[a;Q]

a, b; f∗(P ∧Q) ` f∗P ∧ f∗Q P∧\
f ≡ (a, b 7→ a) O[a;P ] O[a;Q]
a, b; f∗P ∧ f∗Q ` f∗(P ∧Q) P∧

f ≡ (a, b 7→ a) O[a;Q] O[a;R]

a, b; f∗P ∧ f∗Q ` f∗(Q ��R) P ��\ f ≡ (a, b 7→ a) O[a;Q] O[a;R]
a, b; f∗(Q ��R) ` f∗P ∧ f∗Q P ��

f ≡ (a, b 7→ a) O[a, b;P ] O[a;Q]

a;∃f (P ∧ f∗Q) ` (∃fP ) ∧Q Frob\
f ≡ (a, b 7→ a) O[a, b;P ] O[a;Q]

a;∃f (P ∧ f∗Q) ` (∃fP ) ∧Q Frob

O[a;P ] O[a;Q]
a;P ∧Q ` P

π

a, b; f∗(P ∧Q) ` f∗P
f∗

O[a;P ] O[a;Q]
a;P ∧Q ` Q π′

a, b; f∗(P ∧Q) ` f∗Q
f∗

a, b; f∗(P ∧Q) ` f∗P ∧ f∗Q
〈, 〉

f

O[a;Q] O[a;R]
O[a;Q ��R]

��
O[a;Q]

a, b; f∗(Q ��R) ∧ f∗Q ` a, b; f∗((Q ��R) ∧Q) P∧

O[a;Q] O[a;R]
O[a;Q ��R]

��
a;Q ��R ` Q ��R id

a; (Q ��R) ∧Q ` R Uncur

a, b; f∗((Q ��R) ∧Q) ` f∗R
f∗

a, b; f∗(Q ��R) ∧ f∗Q ` f∗R
;

a, b; f∗(Q ��R) ` f∗Q ∧ f∗R Cur
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O[a, b;P ]
O[a;Q]

O[a, b; f∗Q]
f∗

a, b;P ∧ f∗Q ` P
π

a;∃f (P ∧ f∗Q) ` ∃fP
∃f

O[a, b;P ]
O[a;Q]

O[a, b; f∗Q]
f∗

a, b;P ∧ f∗Q ` f∗Q π′

a, b;∃f (P ∧ f∗Q) ` Q ∃f
[

a;∃f (P ∧ f∗Q) ` (∃fP ) ∧Q
〈, 〉

2.16.8 Adjoints to Change-of-Base Functors
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Chapter 3

Downcasing Types

3.1 Simple Proofs

In the BHK interpretation propositions P , Q R are seen as the sets of their
proofs, and a proof of P ∧ Q is a pair made of a proof of P and a proof of Q
and a proof of P ��Q is a function that receives proofs of P and returns proofs
of Q.

As P , Q and R are sets the default choices for names of variables ranging
over them are p, q and r. Let’s forget temporarily the syntactical distinctions
between variables and terms, and let their names also stand for names when
needed; also, let’s allow “long names”: “p, q” will be our default choice of name
for a term or variable whose type is P ×Q = P ∧Q, “p 7→ q” the default for a
term or variable in P → Q = QP = P ��Q. We call the passage from P ∧Q→ R
to p, q 7→ r “downcasing”, and the opposite direction “uppercasing”.

The tree at the left below is a proof of Q ��R ` P ∧ Q ��P ∧ R in Natural
Deduction; the tree at the right is its downcasing,

[P ∧Q]1

P

[P ∧Q]1

Q Q ��R
R

P ∧R
P ∧Q ��P ∧R 1

[p, q]1

p

[p, q]1

q q 7→ r

r

p, r

p, q 7→ p, r
1

and we may interpret each of its bars in a way that parallels the logic: for
example,

Q Q ��R
R

can be read as: “if we know that Q and that Q ��R (i.e., that both Q and Q ��R
are true) then we know that R (is true too)”; in the downcased tree, this is: “if
we know q and q 7→ r (in the sense that we have values/definitions/meanings for
these terms, i.e., we know that their corresponding types are inhabited), then
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we know r (we have a “natural definition” for an r : R in terms q and q 7→ r,
and so we know that R is inhabited)”.

The downcased tree induces these definitions:

p := π (p, q)
q := π′ (p, q)
r := (q 7→ r) q

p, r := 〈p, r〉
p, q 7→ p, r := λ(p, q):(P ∧Q).〈p, r〉

and we can formalize this in Coq as:

(...)

The “〈〈. . .〉〉”s above are long names, in their ascii form. A simple preproces-
sor reads files with these “〈〈. . .〉〉”s and converts them to tokens that Coq can
treat, like:

(...)

The same translator generates another kind of output, in which a few ascii
abbreviations within “〈〈. . .〉〉”s are expanded, — ‘|->’ becomes ‘\mapsto ’, etc;
we can add more, and the result of these expansions is treated as LATEX input
in mathematical mode, and the rest is typeset in verbatim mode. By LATEXing
this output we get:

(...)

We will use this pretty-printed representation in this paper. Note that we can
put arbitrary TEX code in long names — even macros that generate diagrams.

If A, B, C are sets, a similar downcasing interprets:

[a, b]1

a

[a, b]1

b b 7→ c

c

a, c

a, b 7→ a, c
1

[p : A×B]1

πp : A

[p : A×B]1

π′p : B f : B → C

f(π′p) : C
〈πp, f(π′p)〉 : A× C

λp : A×B.〈πp, f(π′p)〉 : A×B → A× C

3.2 Functors

Now fix a set A. The functor (A×) : Set → Set takes each set B to the set
A × B, and each function f : B → C to (A×)f : A × B → A × C, where
(A×)f = λp : A×B.〈πp, f(π′p)〉.
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We downcase the diagram of the functor,

B A×B� A× //

C A× C�
A×
//

� //

B

C

f

��

A×B

A× C

(A×)f :=

λp:A×B.〈πp,f(π′p)〉
��

as:
b a, b+3b

c

_

��

a, b

a, c

_

��
c a, c+3

� //

We use the arrow ‘⇒’ for functors to suggest that functors have two actions
— one on objects, one on morphisms.

It is also useful to think that a functor b ⇒ a, b has a “syntactical action”,
which is to prepend an ‘a,’ to the names of objects. The functor b⇒ a, b takes
the “space of ‘b’s” to the “space of ‘a, b’s”, and takes each arrow b 7→ c to an
arrow a, b 7→ a, c (here we applied its syntactical action to both the source and
the target).

3.3 Categories

Now let A, B, C be objects in a category C — which no longer needs to be Set.
If C has products, we can speak of objects A×B and A×C, and now we have:

b 7→ c : B → C = HomC(B,C)

a, b 7→ a, c : A×B → A× C = HomC(B,C)

We still have a construction for a, b→ a, c starting from b 7→ c, but now it’s
a different one:

A B

a, b 7→ a
π

A B

a, b 7→ b
π′

b 7→ c

a, b 7→ c
;

a, b 7→ a, c

that uppercases to:

A B

πAB : A×B → A

A B

π′AB : A×B → B f : B → C

π′AB ; f : A×B → C

A× f := 〈πAB , π′AB ; f〉 : A×B → A× C

Note that if someone says “take the functor whose downcasing is b ⇒ a, b”
then we just have to understand its action on objects (which is A×) and its
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action on morphisms (that we have just constructed, in slightly different ways,
in Set and in C); the other person is assuring us, through the “the”, that these
actions exist, are not too hard to find, are functorial, and are well-defined; if we
were just conjecturing that a functor named “b ⇒ a, b” should exist we would
have to do all the steps. And in the syntactical world some of the steps —
functoriality, well-definedness — are simply not relevant; the introduction of
the syntactical world permits stating results that are mathematical precise and
coherent doing only a fraction of the work that is needed for results in the real
world — and proving functorialities, naturalities, etc, can be seen as a separate
step.

3.4 Pseudopoints

If C is an arbitrary category with finite products and A, B, C are objects of C
then we have clear meanings for b 7→ c and a, b 7→ a, c — as seen above — but
what are “b”, “a, b”, etc? Does the typing a : A mean something?

One solution is to say that ‘b’, ‘a, b’, etc are “pseudopoints”, and treat them
as syntactical devices that we can use in building larger expressions, which do
have meaning (or: “have semantics” — b 7→ c and a, b 7→ a, c have semantics
because they can appear in the Coq code as variables, constants or terms).

In the case where A, B C were sets we could say:

“a is an element of A”,
“A is the space of ‘a’s”,
“an ‘a, b’ is a pair made of an ‘a’ and a ‘b’ ”,
“A×B is the space of ‘a, b’s”,
“a b 7→ c is a function that takes ‘b’s to ‘c’s”
(Note that we tend to use indefinite articles when we speak of downcasings!)

but when A, B and C are objects of C it is better to say:

“a b 7→ c is a morphism from B to C”,
“HomC(B,C) is the space of ‘b 7→ c’s”,
“B is the object of ‘b’s”,
“B × C is the object of ‘b, c’s”,
“a b, c is a pseudopoint of B × C”.

So the idea of “pseudopoints” exists only to let us have a name for the
syntactical function of the ‘a, b’ and the ‘a, c’ in a morphism a, b 7→ a, c.

Pseudopoints may have a concrete semantics in the archetypal category that
motivates certain kinds of categories; but that will be treated in section .

Here’s one example in which pseudopoints have no reasonable semantics.
Let Aop and Bop be objects of Setop; an arrow Aop → Bop is an arrow B → A
in disguise. If we downcase f : Aop → Bop to aop 7→ bop, then what is an aop?
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3.5 Natural Transformations

3.6 Contexts

3.6.1 Single Hypothesis: CCs

In a cartesian category we have a natural way to interpret judgments involving
only pairings and projections, like, for example,

p : A×B, q : A× C| − 〈〈πq, πp〉, 〈π′p, π′p〉〉 : (A×A)× (B ×B)

They become clearer with our long names and dictionaries:

(a, b) : A×B, (a′, c) : A× C| − ((a′, a), (b, b))

p ≡ a, b
q ≡ a′, c

a := π (a, b)
a′ := π (a′, c)
b := π′ (a, b)

a′, a := 〈a′, a〉
b, b := 〈b, b〉

(a′, a), (b, b) := 〈(a′, a), (b, b)〉

We can omit the types, as they can be reconstructed from the downcasings.
We can reduce the judgment above to:

(a, b), (a′, c) ` (a′, a), (b, b)

A standard trick in Categorical Semantics is to represent the context as
the product of the types of its variables, and the ‘`’ as a morphism from that
product to the type of the result. So our judgment becomes this:

(A×B)× (A× C) → (A×A)× (B ×B)
(a, b), (a′, c) 7→ (a′, a), (b, b)

where
(a, b) := π ((a, b), (a′, c))
(a′, c) := π′ ((a, b), (a′, c))
etc...

In a cartesian category we have projection maps,

A×B oo
π(A×B)(C×D)

(A×B)× (C ×D)
π′(A×B)(C×D) // C ×D

A oo
πAB

A×B
π′AB // B A oo

πAC
A× C

π′AC // C
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and factorizations through products, like:

A

B

f

������������
A

B × C

〈f,g〉ABC

��

A

C

g

��??????????

B B × Coo B × C C//

The construction for the map (A×B)× (A×C)→ (A×A)× (B ×B) can
be extracted from these trees:

(a, b), (a′, c) ` a, b
π(A×B)(A×C)

a, b ` a
πAB

(a, b), (a′, c) ` a
;

(a, b), (a′, c) ` a′, c
π′(A×B)(A×C)

a′, c ` a′
πAC

(a, b), (a′, c) ` a′
;

(a, b), (a′, c) ` a, b
π(A×B)(A×C)

a, b ` b
π′AB

(a, b), (a′, c) ` b
;

(a, b), (a′, c) ` a′ (a, b), (a′, c) ` a
(a, b), (a′, c) ` a′, a

〈, 〉((A×B)×(A×C))AA

(a, b), (a′, c) ` b (a, b), (a′, c) ` b
(a, b), (a′, c) ` b, b

〈, 〉((A×B)×(A×C))BB

(a, b), (a′, c) ` a′, a (a, b), (a′, c) ` b, b
(a, b), (a′, c) ` (a′, a), (b, b)

〈, 〉((A×B)×(A×C))(A×A)(B×B)

The final result is this, if we omit the typings in the ‘π ’s, ‘π′ ’s and ‘〈, 〉 ’s
to make it smaller:

〈〈π′;π, π;π′〉, 〈π′;π, π;π′〉〉 : (A×B)× (A× C) → (A×A)× (B ×B)
((a, b), (a′, c)) 7→ ((a′, a), (b, b))

What matters here is: with the downcasings and the operations in a proto-
cartesian category — projections, pairing — we can build the categorical inter-
pretations of judgments like

(a′, a) : (A×B), (b, b) : (A× C) ` ((a′, a), (b, b)) : (A×A)× (B ×B)
(a, b), (a′, c) ` (a′, a), (b, b)

These categorical constructions behave as expected. For example, the com-
posite of two “flip” functions,

a, a′ ` a′, a a′, a ` a, a′

a, a′ ` a, a′

is the identity — but the proof of this lives in the real world.
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3.6.2 Context Morphisms

3.6.3 Several Hypotheses: CCs (With a Trick)

We can also construct the term for (a, b), (a′, c) ` (a′, a), (b, b) from a tree in
Natural Deduction-style, to which we add the contexts:

a′, c

a′
π

a, b

a
π

a′, a
〈, 〉

 

(a′, c) ` a′, c id

(a′, c) ` a′
;π

(a, b), (a′, c) ` a′ π
′;

(a, b) ` a, b id

(a, b) ` a
;π

(a, b), (a′, c) ` a
π;

(a, b), (a′, c) ` a′, a
〈, 〉

(Note: think of trees with judgments at the nodes as being in “sequent
calculus style”... so for us “Natural Deduction” is when the contexts are hidden,
and “sequent calculus” is when they are explicit.)

This is easy to do when all the nodes have exactly the same single hypothesis
— we would have that in the case γ : (A × B) × (A × C) ` . . ., but not in the
case p : (A × B), q : (A × C) ` . . ., where we have some cases where contexts
have to be merged; a nice way to handle the mergings is to represent them as
extra steps in the tree of judgments:

a′, c

a′
π

a, b

a
π

a′, a
〈, 〉

(a′, c) ` a′, c id

(a′, c) ` a′
;π

(a, b), (a′, c) ` a′ π
′;

(a, b) ` a, b id

(a, b) ` a
;π

(a, b), (a′, c) ` a
π;

(a, b), (a′, c) ` a′, a
〈, 〉

The order of the variables in the context is immaterial, in a sense — the ND
tree at the left above can also be expanded to a sequent calculus “proof” (i.e.,
construction) of (a′, c), (a, b) ` a′, a,

[But one can be obtained from the other one by composing with (iso)morphisms
that scramble the variables in the context...]

[Explain the convention for parentheses in the context: (a, b), (a′, c) ` . . .
is (a, b) : A × B, (a′, c) : A × C ` . . ., ((a, b), (a′, c)) ` . . . is ((a, b), (a′, c)) :
(A×B)× (AxC) ` . . ., and a, b, a′, c ` . . . is a : A, b : B, a′ : A, c : C ` . . ..]

[The internal language: examples]
[Adding + and · to the language with morphisms + : A × A → A and

· : A × A → A, that we downcase to a, a′ 7→ a + a and a, a′ 7→ aa′; the
downcasing of the composite of x, y 7→ xy, y and z, w 7→ z +w is x, y 7→ xy+ y]
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3.6.4 Discharges: CCCs

3.7 Adjunctions

3.8 Currying Functors

If A, B, and C and categories, then we can form the product category A × B
and the category of functors B→ C. It turns out that for any fixed category B,
(×B) : Cat→ Cat and (B→) : Cat→ Cat are functors — this is easy to prove
— and we have (×B) a (B→); the adjunction part is left as an exercise in most
basic Category Theory books, and its proof is quite hairy. We will look at its
syntactical skeleton — which is just the construction of the two transpositions,
[ and ]. The figure is:

A× B Aoo �A× B

C

G[

F

��

A

B→ C

G
F ]

��

oo �� //

C B→ C� //

In the syntactical world the ‘]’ takes each protofunctor F ≡ (F0, F1) : A ×
B → C and produces a protofunctor F ] ≡ (F ]0, F ]1) : A → (B → C). The
action of F ] on morphisms, F ]0, takes each object A of A to an object F ]0A ≡
F ]A of B → C; this F ]A : B → C is itself a (proto)functor, and so it is made
of two components: F ]A ≡ ((F ]A)0, (F ]A)1). The action of F ] on morphisms,
F ]1, takes each morphism α : A → A′ of A to a morphism F ]1α ≡ F ]α :
F ]A → F ]A′ between two functors F ]A,F ]A′ : B → C. This is a natural

transformation, that we can write as B .→ (F ]AB F ]αB→ F ]A′B)). The full
construction is:

[A]3 [B]1

(A,B)
〈, 〉

F

F ]AB ≡ F (A,B)
⇒ E0

(F ]A)0 ≡ λB.F (A,B)
1

[A]3

idA
id [β]2

(idA, β) F

F ]Aβ ≡ F (idA, β)
⇒ E1

(F ]A)1 ≡ λβ.F (idA, β)
2

F ]A ≡ (λB.F (A,B), λβ.F (idA, β))
〈, 〉

F ]0 ≡ λA.(λB.F (A,B), λβ.F (idA, β))
3

[α]5
[B]4

idB
(α, idB) F

F ]αB ≡ F (α, idB)
⇒ E1

F ]α ≡ λB.F (α, idB)
4

F ]1 ≡ λα.λB.F (α, idB)
5

F ] := (λA.(λB.F (A,B), λβ.F (idA, β)), λα.λB.F (α, idB))
〈, 〉

but how could anyone have arrived at this?... and how could anyone check
whether this construction is right?

One possible answer is: “start from the types”.
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A× B Aoo �A× B

C

G[

F

��

A

B→ C

G
F ]

��

oo �� //

C B→ C� //

(A,B)
B

π′

(A,B)
A

π
a⇒ (b⇒ c)
b⇒ c

⇒ E0

C
⇒ E0

(A,B)
B

π′

(A,B)
A

π
G

GA
⇒ E0

G[(A,B) ≡ GAB
⇒ E0

(α, β)
β

π′

b 7→ b′
ren

(α, β)
α

π

A
src

G

a⇒ (b⇒ (a; b)F )
ren

b⇒ (a; b)F
⇒ E0

(a; b)F 7→ (a; b′)F
⇒ E1

(α, β)
β

π′

B′
tgt

(α, β)
α

π

a 7→ a′
ren

G

a⇒ (b⇒ (a; b)F )
ren

(b⇒ (a; b)F ) 7→ (b⇒ (a′; b)F )
⇒ E1

b
•→ ((a; b)F 7→ (a′; b)F )

ren

(a; b′)F 7→ (a′; b′)F
•→ E

(a; b)F 7→ (a′; b′)F
;

(α, β)
β

π′

(α, β)
α

π

A
src

G

GA
⇒ E0

GAβ
⇒ E1

(α, β)
β

π′

B′
tgt

α

(α, β)
G

π

Gα
⇒ E1

GαB′
•→ E

G[(α, β) ≡ GAβ;GαB′
;

[(A,B)]1

B
π′

[(A,B)]1

A
π

G

GA
⇒ E0

G[(A,B) ≡ GAB
⇒ E0

G[0 ≡ λ(A,B).GAB
1

[(α, β)]2

β
π′

[(α, β)]2

α
π

A
src

G

GA
⇒ E0

GAβ
⇒ E1

[(α, β)]2

β
π′

B′
tgt

α

[(α, β)]2

G
π

Gα
⇒ E1

GαB′
•→ E

G[(α, β) ≡ GAβ;GαB′
;

G[1 ≡ λ(α, β).GAβ;GαB′
2

G[ ≡ (λ(A,B).GAB, λ(α, β).GAβ;GαB′)
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3.9 Subsets

3.10 Subobjects

3.11 Projection Functors

A prefibration is just a functor p : E→ B — a “projection functor” going from
the “entire category” to the “base category”. A fibration is a prefibration with
enough “cartesian morphisms” in E, as we will see.

We say that an object X of E is “above” its image pX, and the same for
morphisms. Usually when we draw a morphism X

f→ Y of E above a morphism
I

u→ J of B this means that u = pf : pX → pY . For each object I of B we call
the subcategory p−1(I) of E the fiber above (or “of”) I, and we write EI for
p−1(I).

Each object Z of E induces a functor p/Z : E/Z → B/pZ between slice
categories. We say that a morphism g : Y → Z of E is cartesian when for each
object f : X → Y of E/Z the mapping HomE/Z(f, g) → HomB/pZ(pf, pg) —
that takes each h : X → Y to ph : pX → pY — is a bijection.

P

R

f

''OOOOOOOOOOOOOO

Q R
g
//

P

Q

h
��

pP

pR

pf

''OOOOOOOOOOOOO

pQ pR
pg
//

pP

pQ

ph ��

P

R

f

''OOOOOOOOOOOOOO

v∗R R
vR
//

P

v∗R

h
��

pP

C

pf

''OOOOOOOOOOOOOO

B C
v
//

pP

B

ph ��

a||P

c||R

�

''OOOOOO

b||Q c||R� � //

a||P

b||Q

y

��999999

a

c

�

''OOOOOOOOOOOOOOO

b c
� //

a

b

y

��

This can be made much clearer. Our archetypical fibration is cod : Sub(Set)→
Set [that we sometimes call just Sub(Set)]. An object of Sub(Set) is a monic
A′ � A, and cod(A′ � A) is its codomain, A. Let’s restrict our attention
to subobjects where A′ is a subset of A and ‘�’ is the inclusion; better yet,
let’s regard A′ as the set of the ‘a’s in A that obey some property P . So our
subobject A′� A becomes:

{ a ∈ A | P (a) }� A

Now let’s contract it further, by the use of a double vertical bar in the ‘{ }’.
This

{ a || P (a) }

will be our notation for the whole monic/subobject, and a morphism

{ a || P (a) } → { b || Q(b) }
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in Sub(Set) is in fact a commuting square in Set:

{ a ∈ A | P (a) } { b ∈ B | Q(b) }//{ a ∈ A | P (a) }

A

��
��

{ b ∈ B | Q(b) }

B

��
��

A B//

The projection functor cod says that

{ a || P (a) } → { b || Q(b) }

is over A→ B in the fibration cod : Sub(Set)→ Set:

{ a ∈ A || P (a) } { b ∈ B || Q(b) }//

A B//

E = Sub(Set)

B = Set

p=cod

��

Each map f : A → B in B induces a “change-of-base functor”, f∗ : EB →
EA:

EA EBoo f∗

E

B

p

��
A B

f //

{ a || Q(f(a)) } { b || Q(b) }oo f∗ �{ a || Q(f(a)) }

{ a || Q′(f(a)) }

∀a∈A.Q(f(a))
��Q′(f(a))

or
a;Q(f(a))`Q′(f(a))

��

{ b || Q(b) }

{ a || Q′(b) }

ba∈B.Q(b)
��Q′(b)

or
b;Q(b)`Q′(b)

��
{ a || Q′(f(a)) } { a || Q′(b) }oo

f∗
�

oo �

and also a natural transformation, that produces for each object { b || Q(b) }
over B a “horizontal” map (we will define “horizontality” and “verticality” in
E precisely very soon), { a || Q(f(a)) } → { b || Q(b) }, in E. If we expand this
“horizontal” map into a square in Set we see that what we’ve got is a pullback:

E

B
��

{ a || Q(f(a)) } { b || Q(b) }//{ a || Q(f(a)) } { b || Q(b) }oo
f∗

�

A B//

{ a ∈ A | Q(f(a)) } { b ∈ B | Q(b) }//{ a ∈ A | Q(f(a)) }

A

��
��

{ b ∈ B | Q(b) }

B

��
��

A B//

A B//

oo f∗ �

It is these “maps in Sub(Set) that correspond to pullbacks in Set” that we
will call “cartesian” — but the actual formal definition of cartesianness is more
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abstract; it is the one using a universal property, that we saw at the beginning
of this section.

Before proceeding let’s see some further shorthands, and their downcasings.
Let’s write { c || R(c) } as just { c | R }, and { b || R(g(b)) } as just { b | R }; we
will say that in a diagram

{ b || Q } { c || R }//

B C
g //

the object { b || Q } deserves the name { b || R } when the arrow { b || Q } →
{ c || R } is cartesian. We will downcase { c || R } to c||R, and we will drop the
‘c||’ in diagrams when we can deduce it from the projections below. Also, we will
write f for the natural transformation that returns cartesian morphisms, we will
shrink “{ c || R }” even more to just ‘R’ (now we’ve reached the “standard” level
of abstraction: R is an object over C), and we will use a ‘�’ in the downcased
notation to stress that a morphism is cartesian. So:

{ b || R(g(b)) } { c || R(c) }
fR //{ b || R(g(b)) } { c || R(c) }oo
f∗

�

B C
g //

{ b || R } { c || R }
fR //{ b || R } { c || R }oo
f∗

�

B C
g //

f∗R R
fR //

f∗R Roo
f∗

�

B C
g //

b || R(g(b)) c || R(c)oo � �
b || R(g(b)) c || R(c)+3

b c� //

b || R c || Roo � �
b || R c || R+3

b c� //

R R
oo � �

R R+3

b c� //

[Cartesian liftings]
[The adjunction]
[Cleavage]
[Change-of-base functors]
[v as a natural transformation]
[Vertical and horizontal; mention “prone”]
[Every morphism in E factors as ‘vertical;horizontal’]
[Archetypical case 1: cod : Sub(Set)→ Set. Subobjects]
[Archetypical case 2: cod : Set→ → Set. Display maps]
[Archetypical case 3: Set//Set. Simplified display maps]
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3.12 Some Uppercasings

3.12.1 A Semi-Logical Notation

3.12.2 Lawvere

3.12.3 Seely

3.12.4 Jacobs

3.12.5 Maclane

3.12.6 Awodey

[Awo06]

3.13 Change-of-base

(Transcribed from the back of p.246 in “On Property-Like Structures”).
In the archetypical hyperdoctrine, Sub(Set) — and thus also in the down-

cased notation — the adjoints to weakening (π∗) and contraction (δ∗) func-
tors take particularly simple forms, while the adjoints to arbitrary substitution
functors (f∗) look more complex, and indeed can be (re)constructed from the
adjoints to weakening and contraction.

This makes more sense in the diagrams. If π ≡ (a, b 7→ a) is a projection,
its associated change-of-base functor is a “weakening” rule because its weakens
the context by introducing a new hypothesis:

a, b||Pa a||Paksa, b||Pa

a, b||Qa

_
a,b||Pa`Qa

��

a||Pa

a||Qa

_
a||Pa`Qa
��

a, b||Qa a||Qaks

oo π
∗ �oo

weakening

�

a, b a� π //a, b a�
projection

//

If δ ≡ (a, b b′:=b7→ a, b, b′) is a “duplication” (or “diagonal”), the associated
change-of-base functor is a “contraction” rule, that collapses two hypotheses of
the same type into one:
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a, b||Pabb a, b, b′||Pabb′ksa, b||Pabb

a, b||Qabb

_
a,b||Pabb`Qabb

��

a, b, b′||Pabb′

a, b, b′||Qabb′

_
a,b,b′||Pabb′`Qabb′
��

a, b||Qabb a, b, b′||Qabb′ks

oo δ
∗ �oo

contraction

�

a, b a, b, b′� δ //a, b a, b, b′�
duplication/

diagonal
(b′:=b)

//

In the case of an arbitrary morphism, say, f ≡ (a 7→ b), we will say that the
associated change of base functor, f∗, is just a “substitution”:

a||P (fa) b||P (b)ksa||P (fa)

a||Q(fa)

_
a||P (fa)`Q(fa)

��

b||P (b)

b||Q(b)

_
b||P (b)`Q(b)

��
a||Q(fa) b||Q(b)ks

oo f
∗ �oo

substitution

�

a b� f //a b�
b:=fa

//

Note that we are claiming that these change-of-base functors, π∗, δ∗, f∗, de-
serve the names “a, b||Qa⇐ a||Qa”, “a, b||Qabb⇐ a, b, b′||Qabb′”, “a||Q(fa)⇐
b||Q(b)”; to check that these names are adequate (in the archetype, of course!)
we need to check that the implied cartesian morphisms

a, b||Qa �7→ a||Qa

are really cartesian, which amounts to checking that these diagrams represent
adjunction:

a||Pa |---------------------\

| - > v

b,c||Qb |-cart?-> b||Qb

a |-----------------------\

| - - - > v

b,c |-----------> b

We say that a morphism b||Q 7→ c||R in E is pre-cartesian when it is “on the
way to becoming cartesian”; this means that we have not yet constructed the
universal condition that proves that it is cartesian, but we are going towards
that.

Note that this terminology — “on the way to becoming”, “not yet”, “towards
that” — imply that there are underlying notions of time and aim; they refer to
a mathematician (or a proof assistant) who is working on a proof.

We can picture the situation as this:
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statement

+ proof |- - ->

S+P^-

<- - -|

statement

+ witness

Take a statement S; for example, “b, c||Rc 7→ c||Rc is cartesian”. We may
have a witness, W , for “σ is true”; in our everyday practice a “witness” may be
a mathematician — in flesh and bones; or a book; or an article, an e-mail, etc
— who says that σ is true; in a purely mathematical world, however, a witness
for σ may be something as abstract as a point in the set

{x ∈ {∗} | σ is true },

which is a singleton if σ is true, or the empty set if σ is false.
Starting from S and W — or even from just S, if we are brave — we may

try to work towards a situation where we have even more information: S + P ,
where P is a proof of the statement S. In our example, a proof is an inverse for
a certain natural map.

If you, reader, are a strictly classical mathematician, I urge you to skip the
rest of this paragraph; for those who are still reading, an inverse for the natural
transformation

a||P |--------\

|-> v

b||Q |-> c||R

a |----------\

|-> v

b |-----> c

is a construction that receives triples ({ a||P }, (a||P 7→ c||R), (a 7→ b)) obey-
ing a certain commutativity condition and return the unique corresponding
a||P 7→ b||Q.

[And constructions are lambda-terms.]

3.14 Preservations

[Explain these diagrams:]

> >ks>

>

_
\
��

>

>

OO
P>

_

a b� //

P PksP

P ∧Q

OO

_

P

P ∧Q

hh

�QQQQQQQQQQ P

P ∧Q

OO

_
oo �

P ∧Q P ∧Qoo \ �
P ∧Q P ∧Q�

P∧
// P ∧Q P ∧QksP ∧Q

Q

_

��

P ∧Q

Q

-

vvmmmmmmmmmm
P ∧Q

Q

_

��
oo �

Q Qks

a b� //
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f∗>B >Boo �
f∗>B

>A

\
��

f∗>B

>A

OO
P>

A B
f //

f∗P Poo �f∗P

f∗P ∧ f∗Q

OOf
∗P

f∗(P ∧Q)

hh

QQQQQQQQQ P

P ∧Q

OO
oo �

f∗P ∧ f∗Q f∗(P ∧Q)oo \
f∗P ∧ f∗Q f∗(P ∧Q)

P∧
// f∗(P ∧Q) P ∧Qoo �

f∗P ∧ f∗Q

f∗Q
��

f∗(P ∧Q)

f∗Q
vvmmmmmmmmm

P ∧Q

Q
��

oo �

f∗Q Qoo �

A B
f //

[Explain these diagrams:]

(P ��Q) ∧ P (P ��Q) ∧ Poo \ �
(P ��Q) ∧ P (P ��Q) ∧ P�

P∧
// (P ��Q) ∧ P (P ��Q) ∧ Pks(P ��Q) ∧ P

Q

_

��

(P ��Q) ∧ P

Q

*

ttjjjjjjjjjjjjj
(P ��Q) ∧ P

Q

_

��
Q Qks

(P ��Q) ∧ P

P ��Q
bj

LLLLLLLLLLLLLLL

LLLLLLLLLLLLLLL

Q

P ��Q"*LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

(P ��Q) ∧ P

P ��Q
bj

LLLLLLLLLLLLLLL

LLLLLLLLLLLLLLL

Q

P ��Q"*LLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLL

P ��Q P ��Qks P ��Q
P ��Q

_
id��

P ��Q
P ��Q

_
\
��

P ��Q
P ��Q
OO
P

��_

oo �

�
&&LLLL ff

�LLLL

a b
� //

f∗(P ��Q) ∧ f∗P f∗((P ��Q) ∧ P )oo \f∗(P ��Q) ∧ f∗P f∗((P ��Q) ∧ P )
P∧
// f∗((P ��Q) ∧ P ) (P ��Q) ∧ Poo �f∗(P ��Q) ∧ f∗P

f∗Q
��

f∗((P ��Q) ∧ P )

f∗Q
ttjjjjjjjjjjjj

(P ��Q) ∧ P

Q
��

f∗Q Qoo �

f∗(P ��Q) ∧ f∗P

f∗(P ��Q)

cc

�GGGGGGGGGGGGGGGGGG

f∗Q

f∗P ��f∗Q

�

##GGGGGGGGGGGGGGGGGG

(P ��Q) ∧ P

P ��Q

cc

�GGGGGGGGGGGGGGGGGG

Q

P ��Q

�

##GGGGGGGGGGGGGGGGGGG

f∗(P ��Q) P ��Qoo � P ��Q
P ��Qid��

f∗(P ��Q)

f∗P ��f∗Q\
��

f∗(P ��Q)

f∗P ��f∗Q
OO
P

��

oo �

�
##GGGGG cc

�GGGGG

A B
f //
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3.15 Display Maps

3.16 Quantifiers

3.17 Equality

3.18 Beck-Chevalley for ‘Exists’

P PksP

∃c.P

_

��

P

∃c.P

�

((QQQQQQQQQQQ P

∃c.P

_

��
∃c.P ∃c.Poo // ∃c.P ∃c.Pks

P

∃c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF P

∃c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF

∃c.P

∃c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF
∃c.P

∃c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF

∃c.P ∃c.Pks

∃c.P

∃c.P

_
id
��

∃c.P

∃c.P

_
\
��

∃c.P

∃c.P

OO
BCC∃

_

oo �

�
##FFFFF cc

�FFFFF

a, c b, c
� //a, c

a

�

##FFFFFFFFFFFFFF b, c

b

�

##FFFFFFFFFFFFFF

a b� //

d : Dbc[b:=fa] d : Dbc
ksd : Dbc[b:=fa]

p : (Σc:Cb.Dbc)[b:=fa]

_

��

d : Dbc[b:=fa]

p : (Σc:Cb.Dbc)[b:=fa]

�
++WWWWWWWWWWWWW

d : Dbc

p : Σc:Cb.Dbc

_

��
p : (Σc:Cb.Dbc)[b:=fa] p : (Σc:Cb.Dbc)[b:=fa]oo // p : (Σc:Cb.Dbc)[b:=fa] p : Σc:Cb.Dbc

ks

d : Dbc[b:=fa]

p : (Σc:Cb[b:=fa].Dbc[b:=fa])
�&

EEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEE
d : Dbc

p : Σc:Cb.Dbc

�&
EEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEE

p : (Σc:Cb.Dbc)[b:=fa]

p : (Σc:Cb.Dbc)[b:=fa]

^f

EEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEE
p : Σc:Cb.Dbc

p : Σc:Cb.Dbc

^f

EEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEE

p : (Σc:Cb.Dbc)[b:=fa] p : Σc:Cb.Dbc
ks

p : Σc:Cb.Dbc

p : Σc:Cb.Dbc

_
id��

p : (Σc:Cb[b:=fa].Dbc[b:=fa])

p : (Σc:Cb.Dbc)[b:=fa]

_
\ ��

p : (Σc:Cb[b:=fa].Dbc[b:=fa])

p : (Σc:Cb.Dbc)[b:=fa]

OO
BCC∃_

oo �

�
""EEEEE bb

�EEEEE

a : A, c : Cb[b:=fa] b : B, c : Cb
� b:=fa //a : A, c : Cb[b:=fa]

a : A

�

""EEEEEEEEEEEEEEEEE
b : B, c : Cb

b : B

�

""EEEEEEEEEEEEEEEEE

a : A b : B� b:=fa //
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a : A ` fa : B

b : B, c : C ` Db : Θ
b : B ` Σc:C.Db : Θ Σ

b : B; p : Σc:Cb.Dbc ` p : Σc:Cb.Dbc
id

b : B, c : Cb; d : Dbc ` 〈c, d〉 : Σc:Cb.Dbc
Σ]

a : A, c : Cb[b:=fa]; d : Dbc[b:=fa] ` 〈c, d〉[b:=fa] : (Σc:Cb.Dbc)[b:=fa]
cut

a, c; p ` p
a : A, c : Cb[b:=fa]; d : Dbc[b:=fa] ` 〈c, d〉[b:=fa] : (Σc:Cb.Dbc)[b:=fa]

;

a : A; p : Σc:Cb[b:=fa].Dbc[b:=fa] ` 〈c, d〉[b:=fa][c, d := unp p] : (Σc:Cb.Dbc)[b:=fa][c, d := unp p] Σ[

[Explain these diagrams:]

P PksP

∃c.P

_

��

P

∃c.P

�

((QQQQQQQQQQQ P

∃c.P

_

��
∃c.P ∃c.Poo // ∃c.P ∃c.Pks

P

∃c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF P

∃c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF

∃c.P

∃c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF
∃c.P

∃c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF

∃c.P ∃c.Pks

∃c.P

∃c.P

_
id
��

∃c.P

∃c.P

_
\
��

∃c.P

∃c.P

OO
BCC∃

_

oo �

�
##FFFFF cc

�FFFFF

a, c b, c� //a, c

a

�

##FFFFFFFFFFFFFF b, c

b

�

##FFFFFFFFFFFFFF

a b� //

f ′ ∗ P Poo �f ′ ∗ P

c′ ∗ f∗∃cP
��

f ′ ∗ P

f ′ ∗ c∗∃cP
((QQQQQQQQ P

c∗∃cP
��

c′ ∗ f∗∃cP f ′ ∗ c∗∃cPoo // f ′ ∗ c∗∃cP c∗∃cPoo �

f ′ ∗ P

∃c′f ′ ∗ P

�

##FFFFFFFFFFFFF P

∃cP

�

##FFFFFFFFFFFFF

c′ ∗ f∗∃cP

f∗∃cP

cc

�FFFFFFFFFFFFF c∗∃cP

∃cP

cc

�FFFFFFFFFFFFF

f∗∃cP ∃cPoo �

∃cP

∃cP
id��

∃c′f ′ ∗ P

f∗∃cP
\
��

∃c′f ′ ∗ P

f∗∃cP

OO
BCC∃

oo �

�
##FFFFF cc

�FFFFF

A× C B × C
f ′

//A× C

A

c′

##FFFFFFFFFFFFFF B × C

B

c

##FFFFFFFFFFFFFF

A B
f

//
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3.19 Beck-Chevalley for ‘For All’

∀c.P ∀c.Poo // ∀c.P ∀c.Pks∀c.P

P

_

��

∀c.P

P

-

vvmmmmmmmmmmm ∀c.P

P

_

��
P Pks

∀c.P

∀c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF

P

∀c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF

∀c.P

∀c.P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF

P

∀c.P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF

∀c.P ∀c.Pks ∀c.P

∀c.P

_
id
��

∀c.P

∀c.P

_
\
��

∀c.P

∀c.P

OO
BCC∀

_

oo �

�
##FFFFF cc

�FFFFF

a, c b, c
� //a, c

a

�

##FFFFFFFFFFFFFF b, c

b

�

##FFFFFFFFFFFFFF

a b� //

c′ ∗ f∗∀cP f ′ ∗ c∗∀cPoo // f ′ ∗ c∗∀cP c∗∀cPoo �c′ ∗ f∗∀cP

f ′ ∗ P
��

f ′ ∗ c∗∀cP

f ′ ∗ P
vvmmmmmmmm

c∗∀cP

P
��

f ′ ∗ P Poo �

c′ ∗ f∗∀cP

f∗∀cP

cc

�FFFFFFFFFFFFF

f ′ ∗ P

∀c′f ′ ∗ P

�

##FFFFFFFFFFFFF

c∗∀cP

∀cP

cc

�FFFFFFFFFFFFF

P

∀cP

�

##FFFFFFFFFFFFF

f∗∀cP ∀cPoo � ∀cP

∀cP
id��

f∗∀cP

∀c′f ′ ∗ P
\
��

f∗∀cP

∀c′f ′ ∗ P

OO
BCC∀

oo �

�
##FFFFF cc

�FFFFF

A× C B × C
f ′

//A× C

A

c′

##FFFFFFFFFFFFFF B × C

B

c

##FFFFFFFFFFFFFF

A B
f //

3.20 Beck-Chevalley for Equality

[BCC for equality is the same, categorically; point that in [Jacobs] and in [Seely-
Hyp] they are kept separate, because they don’t require a left adjoint to all ‘f ’s
in the base — just for projections and diagonals. The downcased diagram is
different...]
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P PksP

c=c∧P

_

��

P

c=c∧P

�

((QQQQQQQQQQ P

c=c∧P

_

��
c=c∧P c=c∧Poo // c=c∧P c=c∧Pks

P

c=c′∧P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF P

c=c′∧P
�'FFFFFFFFFFFFF

FFFFFFFFFFFFF

c=c∧P

c=c′∧P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF
c=c∧P

c=c′∧P

_g

FFFFFFFFFFFFF

FFFFFFFFFFFFF

c=c′∧P c=c′∧Pks

c=c′∧P

c=c′∧P

_
id
��

c=c′∧P

c=c′∧P

_
\
��

c=c′∧P

c=c′∧P

OO
BCC∃

_

oo �

�
##FFFFF cc

�FFFFF

a, c b, c
� //a, c

a, c, c′

�

##FFFFFFFFFFFFF b, c

b, c, c′

�

##FFFFFFFFFFFFF

a, c, c′ b, c, c′� //

f ′ ∗ P Poo �
f ′ ∗ P

c′ ∗ f∗EqcP
��

f ′ ∗ P

f ′ ∗ c∗EqcP
((QQQQQQQQ P

c∗EqcP
��

c′ ∗ f∗EqcP f ′ ∗ c∗EqcPoo // f ′ ∗ c∗EqcP c∗EqcPoo �

f ′ ∗ P

Eqc′f
′ ∗ P

�

##FFFFFFFFFFFFF P

EqcP

�

##FFFFFFFFFFFFF

c′ ∗ f∗EqcP

f∗EqcP

cc

�FFFFFFFFFFFFF
c∗EqcP

EqcP

cc

�FFFFFFFFFFFFF

f∗EqcP EqcPoo �

EqcP

EqcP

id��

Eqc′f
′ ∗ P

f∗EqcP

\
��

Eqc′f
′ ∗ P

f∗EqcP

OO
BCC=

oo �

�
##FFFFF cc

�FFFFF

A× C B × C
f ′

//A× C

A× C × C

c′

##FFFFFFFFFFFFF B × C

B × C × C

c

##FFFFFFFFFFFFF

A× C × C B × C × C
f

//

3.21 Frobenius for ‘Exists’

[Explain the diagrams below, and include the diagrams that show that in the
presence of a left adjoint to change-of-base we have that “Frobenius is equivalent
to preservation of ‘implies’ ”.]

[Frobenius for exists:]

P ∃c.P+3

P ∧Q

P

_

OO

∃c.(P ∧Q)

∃c.P

-

66mmmmmmmmm
(∃c.P ) ∧Q

∃c.P

_

OO

Q Qks

P ∧Q

Q

_

��

∃c.(P ∧Q)

Q

�

((QQQQQQQQQQ
(∃c.P ) ∧Q

Q

_

��

P ∧Q ∃c.(P ∧Q)+3 ∃c.(P ∧Q) (∃c.P ) ∧Q
� \ //∃c.(P ∧Q) (∃c.P ) ∧Qoo
Frob∃

�

� //

� //

b, c b
� //
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P ∃cP� //

P ∧ c∗Q

POO

∃c(P ∧ c∗Q)

∃cP66mmmmmmmmm
(∃cP ) ∧Q

∃cPOO

c∗Q Qoo �

P ∧ c∗Q

c∗Q
��

∃c(P ∧ c∗Q)

Q
((QQQQQQQQQQ

(∃cP ) ∧Q

Q
��

P ∧ c∗Q ∃c(P ∧ c∗Q)� // ∃c(P ∧ c∗Q) (∃cP ) ∧Q
\ //∃c(P ∧ c∗Q) (∃cP ) ∧Qoo

Frob∃

� //

� //

B × C B
c //

3.22 Frobenius for Equality

[Frobenius for equality:]

P c=c′∧P+3

P ∧Q

P

_

OO

c=c′∧(P ∧Q)

c=c′∧P

+

55kkkkkkkkkk
(c=c′∧P ) ∧Q

c=c′∧P

_

OO

Q Qks

P ∧Q

Q

_

��

c=c′∧(P ∧Q)

Q

�

))SSSSSSSSSSSS
(c=c′∧P ) ∧Q

Q

_

��

P ∧Q c=c′∧(P ∧Q)+3 c=c′∧(P ∧Q) (c=c′∧P ) ∧Q
� \ //c=c′∧(P ∧Q) (c=c′∧P ) ∧Qoo
Frob=

�

� //

� //

b, c b, c, c′� //

P EqcP
� //

P ∧ c∗Q

POO

Eqc(P ∧ c∗Q)

EqcP55kkkkkkkkkk
(EqcP ) ∧Q

EqcPOO

c∗Q Qoo �

P ∧ c∗Q

c∗Q
��

Eqc(P ∧ c∗Q)

Q
))SSSSSSSSSSSS

(EqcP ) ∧Q

Q
��

P ∧ c∗Q Eqc(P ∧ c∗Q)� // Eqc(P ∧ c∗Q) (EqcP ) ∧Q
\ //Eqc(P ∧ c∗Q) (EqcP ) ∧Qoo

Frob=

� //

� //

B × C B × C × Cc //

[Frobenius for an arbitrary map:]

Pa ∃a.b = fa ∧ Pa+3

Pa ∧Qfa

Pa

_

OO

∃a.b = fa ∧ (Pa ∧Qfa)

∃a.b = fa ∧ Pa
'

33gggggggggggg
(∃a.b = fa ∧ Pa) ∧Qb

∃a.b = fa ∧ Pa

_

OO

Qfa Qbks

Pa ∧Qfa

Qfa

_

��

∃a.b = fa ∧ (Pa ∧Qfa)

Qb

�

++WWWWWWWWWWWWWWWWW
(∃a.b = fa ∧ Pa) ∧Qb

Qb

_

��

Pa ∧Qfa ∃a.b = fa ∧ (Pa ∧Qfa)+3 ∃a.b = fa ∧ (Pa ∧Qfa) (∃a.b = fa ∧ Pa) ∧Qb
� \ //∃a.b = fa ∧ (Pa ∧Qfa) (∃a.b = fa ∧ Pa) ∧Qboo

Frob∃=
�

� //

� //

a b� //
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P EqfP
� //

P ∧ f∗Q

POO

Eqf (P ∧ f∗Q)

EqfP33gggggggggggggggg
(EqfP ) ∧Q

EqfPOO

f∗Q Qoo �

P ∧ f∗Q

f∗Q
��

Eqf (P ∧ f∗Q)

Q++
WWWWWWWWWWWWWWWWW

(EqfP ) ∧Q

Q
��

P ∧ f∗Q Eqf (P ∧ f∗Q)� // Eqf (P ∧ f∗Q) (EqfP ) ∧Q
\ //Eqf (P ∧ f∗Q) (EqfP ) ∧Qoo

Frob∃=

� //

� //

A B
f //

3.23 Hyperdoctrines

We say that a cloven fibration p : E→ B is a hyperdoctrine when:
(1) the base category B is a CCC,
(2) each fiber EB is a CCC,
and for each f : A→ B in B the change-of-base functor f∗ has:
(3) a left adjoint, Σf a f∗,
(4) a right adjoint, f∗ a Πf ,
and each change-of base functor f∗ preserves, modulo iso,
(5) the terminal,
(6) binary products,
(7) exponentials,
and furthermore the following three “technical conditions” hold:
(8) Beck-Chevalley for “exists”,
(9) Beck-Chevalley for “forall”,
(10) Frobenius.

Our archetypical fibration cod : Sub(Set) → Set is a hyperdoctrine — it
was the motivation for the definition of hyperdoctrine, by the way — and we
can use a notation “lifted” from cod : Sub(Set) → Set to define each of these
properties diagramatically, an to prove a few theorems about hyperdoctrines.

3.24 Three Theorems from Lawvere’s “Hyper-
doctrines” Paper

3.24.1 Frob and Pimp

a, b; (c, d) a; (b, (c, d))+3a, b; (c, d)

a, b; c

KS
a; (b, (c, d))

a; ((b, c), d)

_
Frob\ ��

a; (b, (c, d))

a; ((b, c), d)

OO
Frob_

a; ((b, c), d)

a; (b, c)

KS

a, b; c a; (b, c)+3

a; e

a; (d7→e)
��

a; ea, b; e ks

a; (d7→e)a, b; (d7→e)A ksa, b; (d7→e)A

a, b; (d 7→e)B

_P
��\OO

a, b; (d7→e)A

a, b; (d 7→e)B

��P
��_
a, b; e

a, b; (d 7→e)B
��
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C × b∗D Σb(C × b∗D)� Σb //C × b∗D

C

OO

×b∗D

_

Σb(C × b∗D)

ΣbC ×D
Frob\ ��

Σb(C × b∗D)

ΣbC ×D

OO
Frob

ΣbC ×D

ΣbC

OO

×D

_
C ΣbC

� Σb //

b∗E Eoo b∗ �
b∗E

b∗D→b∗E

_

b∗D→

��

E

D→E

_

D→

��
b∗(D→E) D→Eoo

b∗
�

b∗D→b∗E

b∗(D→E)

OO
P

��\b∗D→b∗E

b∗(D→E)

P
��

��

P ∧Q ∃b.(P ∧Q)� Σπ //P ∧Q

P

OO

×b∗D

_

∃b.(P ∧Q)

(∃b.P ) ∧Q
Frob\ ��

∃b.(P ∧Q)

(∃b.P ) ∧Q

OO
Frob

(∃b.P ) ∧Q

∃b.P

OO

×D

_
P ∃b.P� Σπ //

R Roo π∗ �
R

Q ��R
_

b∗D→

��

R

Q ��R

_

D→

��
Q ��R Q ��Roo

π∗
�

Q ��R
Q ��R
OO

P
��\Q ��R
Q ��RP ����

P ∧ f∗Q ∃f (P ∧ f∗Q)� Σf //P ∧ f∗Q

P

OO

∧ f∗Q

_

∃f (P ∧ f∗Q)

(∃fP ) ∧Q
Frob\ ��

∃f (P ∧ f∗Q)

(∃fP ) ∧Q

OO
Frob

(∃fP ) ∧Q

∃fP

OO

∧Q

_
P ∃fP� Σf //

f∗R Roo f∗ �f∗R

f∗Q ��f∗R
_

f∗Q
��
��

R

Q ��R

_

Q
��

��
f∗(Q ��R) Q ��Roo f

∗ �

f∗Q ��f∗R
f∗(Q ��R)

OO
P

��\f∗Q ��f∗R
f∗(Q ��R)

P
����

a, b;P ∧ f∗Q ` f∗R a;∃f (P ∧ f∗Q) ` R
� Σ[ //

a, b;P ∧ f∗Q ` f∗R a;∃f (P ∧ f∗Q) ` Roo
Σ]

�a, b;P ∧ f∗Q ` f∗R

a, b;P ` f∗Q ��f∗R

OO

Uncur

_

a, b;P ∧ f∗Q ` f∗R

a, b;P ` f∗Q ��f∗R

_

Cur

��

a;∃f (P ∧ f∗Q) ` R

a, b;∃fP ∧Q ` R?

_
Frob; ��

a;∃f (P ∧ f∗Q) ` R

a, b;∃fP ∧Q ` R?

OO
Frob\;_

a, b;∃fP ∧Q ` R?

a;∃fP ` Q ��R

OO

Uncur

_

a, b;∃fP ∧Q ` R?

a;∃fP ` Q ��R

_

Cur

��

a, b;P ` f∗Q ��f∗R
a, b;P ` f∗(Q ��R)

_
;P

��\ ��a, b;P ` f∗Q ��f∗R
a, b;P ` f∗(Q ��R)

OO
;P

��
_

a, b;P ` f∗(Q ��R) a;∃fP ` Q ��R� Σ[ //a, b;P ` f∗(Q ��R) a;∃fP ` Q ��Roo
Σ]

�
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a, b; (c, d) ` e a; (b, (c, d)) ` e
� Σ[ //a, b; (c, d) ` e a; (b, (c, d)) ` eoo

Σ]

�a, b; (c, d) ` e

a, b; c ` (d 7→e)B

OO

Uncur

_

a, b; (c, d) ` e

a, b; c ` (d 7→e)B

_

Cur

��

a; (b, (c, d)) ` e

a; ((b, c), d) ` e

_
Frob; ��

a; (b, (c, d)) ` e

a; ((b, c), d) ` e

OO
Frob\;_

a; ((b, c), d) ` e

a; (b, c) ` (d7→e)

OO

Uncur

_

a; ((b, c), d) ` e

a; (b, c) ` (d7→e)

_

Cur

��

a, b; c ` (d 7→e)B

a, b; c ` (d 7→e)A

_
P

��\ ��a, b; c ` (d 7→e)B

a, b; c ` (d 7→e)A

OO
P

��_
a, b; c ` (d 7→e)A a; (b, c) ` (d7→e)

� Σ[ //
a, b; c ` (d 7→e)A a; (b, c) ` (d7→e)oo

Σ]

�

Let
A ≡ E[a],
B ≡ E[a, b],
b ≡ a, b7→b,
C ≡ O[a, b; c],
D ≡ O[a; d],
E ≡ O[a; e].

Then:

ΣbC ×D ΣbCoo ×D �ΣbC ×D

Σb(C × b∗D)

OO
Frob\

ΣbC ×D

Σb(C × b∗D)

Frob��
Σb(C × b∗D)

C × b∗D

OO

Σb

_

ΣbC

C

OO

Σb

_
C × b∗D Coo ×b

∗D �

E D→E� D→ //E

b∗E

_

b∗

��

D→E

b∗(D→E)

_

b∗

��
b∗(D→E)

b∗D→b∗E
P

��\ ��b∗(D→E)

b∗D→b∗E

OO
P

��
b∗E b∗D→b∗E�

b∗D→
//

((ΣbC ×D)→ E) (ΣbC → (D→E))oo Uncur
((ΣbC ×D)→ E) (ΣbC → (D→E))

Cur
//((ΣbC ×D)→ E)

(Σb(C × b∗D)→ E)
Frob\; ��

((ΣbC ×D)→ E)

(Σb(C × b∗D)→ E)

OO
Frob;

(ΣbC → (D→E))

(C → b∗(D→E))

Σ]

��

(ΣbC → (D→E))

(C → b∗(D→E))

OO

Σ[(Σb(C × b∗D)→ E)

((C × b∗D)→ b∗E)

Σ]

��

(Σb(C × b∗D)→ E)

((C × b∗D)→ b∗E)

OO

Σ[ (C → b∗(D→E))

(C → (b∗D→b∗E))
;P

��\ ��(C → b∗(D→E))

(C → (b∗D→b∗E))

OO
;P

��
((C × b∗D)→ b∗E) (C → (b∗D→b∗E))ooUncur
((C × b∗D)→ b∗E) (C → (b∗D→b∗E))

Cur
//

3.24.2 Adjoints to Arbitrary Changes of Base

[Explain these diagrams:]
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Pab ∃b.Pab+3Pab

Qa

_

��

∃b.Pab

Qa

_

��
oo //

Qa QaksQa

Rab

_

��

Qa

∀b.Rab

_

��
oo //

Rab ∀b.Rab+3

a, b a
� //

Pab b = b′ ∧ Pabb+3Pab

Qabb

_

��

b = b′ ∧ Pabb

Qabb′

_

��
oo //

Qabb Qabb′ksQabb

Rab

_

��

Qabb′

b = b′ ��Rab
_

��
oo //

Rab b = b′ ��Rab+3

a, b a, b, b′
� //

Pa ∃a.a = fb ∧ Pa+3Pa

Qfa

_

��

∃a.a = fb ∧ Pa

Qb

_

��
oo //

Qfa QbksQfa

Ra

_

��

Qb

∀a.a = fb ��Pa
_

��
oo //

Ra ∀a.a = fb ��Pa+3

a b
� f //

3.24.3 Equality

(find-lawvere70page 6 "Substitutivity of equality")

Proposition (substitutivity of equality). In any eed in which, for
every term f : X → Y and any two attributes α, ψ of type Y , the canonical
deduction

f · (α⇒ ψ)→ f · α⇒ f · ψ

is an isomorphism, one also has, for any attribute ψ of type X, a canonical
deduction

ΘX → π1 · ψ ⇒ π2 · ψ

over X ×X.

The first canonical deduction that he mentions is my derived rule P ��\:
f α ψ

f · (α⇒ ψ)→ f · α⇒ f · ψ P ��\
which expands to:

f α

α ψ

α⇒ ψ

f · α ∧ f · (α⇒ ψ)→ f · (α ∧ α⇒ ψ) P∧

α ψ

α⇒ ψ

α⇒ ψ → α⇒ ψ
id

α ∧ α⇒ ψ → ψ
Uncur

f · (α ∧ α⇒ ψ)→ f · ψ
(f ·)1

f · α ∧ f · (α⇒ ψ)→ f · ψ Cur

f · (α⇒ ψ)→ f · α⇒ f · ψ Cur
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The second deduction is this:

ϕ

ϕ ∧ 1X → ϕ

1X → ϕ⇒ ϕ
Cur

1X → id · ϕ⇒ id · ϕ iso

1X → (δπ1) · ϕ⇒ (δπ2) · ϕ
ren

1X → δ · (π1 · ψ)⇒ δ · (π2 · ψ)
iso

δ π1 · ψ π2 · ψ
δ · (π1 · ψ)⇒ δ · (π2 · ψ)→ δ · (π1 · ψ ⇒ π2 · ψ) P ��

1X → δ · (π1 · ψ ⇒ π2 · ψ)
;

1XΣ(Xδ)→ π1 · ψ ⇒ π2 · ψ
Eq[

ΘX → π1 · ψ ⇒ π2 · ψ
ren

I just realized that I have never defined the “iso” rules... an example:

α↔ α′ ϕ↔ ϕ′ ψ ↔ ψ′
α ϕ ψ

α ∧ ϕ⇒ ψ

(α ∧ ϕ⇒ ψ)↔ (α′ ∧ ϕ′ ⇒ ψ′)
iso
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Notes and Further Reading

I’ve learned hyperdoctrines from [SeelyPLC], [SeelyHyp], [Jacobs], and [Stre-
icherBenabou], and I found the subject very hard. The ideas from this paper
can be used — I hope! — to make it a bit simpler: we’ve seen how to split
the theory in two parts, and how to start by the syntactical part; and we can
draw diagrams with the same structure as the ones in these notes but using
the notations of other texts, and then we can compare the diagrams in different
notations and use them as dictionaries between the different languages.

[To do: dictionaries for the papers and books above, and for [LawvereAdj-
Found] and [LawvereEqHyp]. The most important parts are the diagrams for
the structure in B and E and for the change-of-base functors and their adjoints
— the diagrams for the preservations, BCCs and Frobenius don’t really need to
be drawn, as they can be reconstructed from the others; we only need the show
the notation for the arrows in them that are required to be isos.]

[I have the impression that there are very good accounts of fibrations in [Tay-
lorPhDThesis] and [JohnstoneElephant], but I haven’t read them with enough
attention yet.]

[I’ve learned monads from [CWM], [TTT], [SchalkMonads], [BeckPhDThe-
sis] and [Awodey]; compare their notations. To do, also: create a comparison
diagram for comonads (easy), discuss the case of building R[x] from R when R
is a ring (good references: [LambekScott], [Awodey]). Try to find a proto-proof
for Lambek’s theorem (that says that an initial algebra in an Eilenberg-Moore
category is an iso).]

[A medium-term goal: finish the downcasing of differential categories, as pre-
sented in [BluteCockettSellyDiffCats]. I have crappy ascii-art renderizations of
some of the downcased diagrams here: http://angg.twu.net/2007diffcats.
html (but it may contain errors). I don’t understand enough of [BluteCock-
ettSellyCartDiffCats] yet.]

[I have a very nice downcasing of the best part of this: Kock, Anders: A
simple axiomatics for differentiation (1977) — I presented it in seminars at UFF,
but I’d look to clean it up (I have better notations now), and I lost the source
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code for my diagrams... (what is the URL of the PDF with the slides?)]
[This looks extremely interesting: [KellyLack], “On Property-Like Struc-

tures” — but its ideas are far above my head now. It will be better to try to
read it when I have more contact with grown-up categorists.]

[This looks extremely interesting too: section D1.4, “Syntactic categories”,
of [JohnstoneElephant2].]

[Point to several parts of [KromerToolAndObject] where he discusses hav-
ing vs. not having elements; my ‘a7→b’ notation is like the “internal view” of
morphisms that appears in [LawvereSchanuelCM], p.13 (the “internal diagram
of a set”), and it’s like a mix between the usual ‘x 7→f(x)’ and the ‘y = y(x)’
notations.]

a ` D a, b; c ` d
a; (b, c) ` d Σ[

a; (b, c) ` d
a, b; c ` d Σ]

a ` Da a, b; c ` dabc
a; p ` dabc[b, c := unp p] Σ[

a; p ` dap
a, b; c ` dap[p := 〈b, c〉] Σ]

a ` Da a, b; c ` dabc
a; p ` dabc[b, c := unp p] Σ[

a, b; c ` dabc[b, c := unp p][p := 〈b, c〉] Σ]

a, b; c ` dabc[b, c := unp 〈b, c〉]
ren

a; p ` dap
a, b; c ` dap[p := 〈b, c〉] Σ]

a; p ` dap[p := 〈b, c〉][b, c := unp p] Σ[

a; p ` dap[p := 〈unp p〉]
ren

a ` D a, b; d ` e
a; d ` (b 7→e) Π]

a; d ` (b7→e)
a, b; d ` e Π[

a ` Da a, b; d ` eabd
a; d ` λb.eabd Π]

a; d ` fad
a, b; d ` fadb Π[

a ` Da a, b; d ` eabd
a; d ` λb.eabd Π]

a, b; d ` (λb.eabd)b
Π[

a; d ` fad
a, b; d ` fadb Π[

a; d ` λb.(fadb) Π]

Pab ∃b.Pab+3Pab

Qa

_

��

∃b.Pab

Qa

_

��
Qa QaksQa

Rab

_

��

Qa

∀b.Rab

_

��
Rab ∀b.Rab+3

� [ //oo
]

�

oo [ ��
]
//

a, b a
� //

(Transcribed from the blue notebook).
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••
Over the next few sections we are going to understand several pure type

systems, then follow the formal definition of PTSs in [GeuvThesis]. The reader
is encouraged to think that the PTSs that we will (begin to) define in sections ,
, , , namely, PTSΘ, PTSΘ�, PTS, PTS, PTS, are “fragments” of a bigger type

system, PTSΩΘ�, that will be formally defined in section ; they are “fragments”
in the sense that they allow only a few of the rules of the bigger type system
in their derivations (see section ), and so their sets of derivable judgments,
DJ(PTSΘ), ..., DJ(PTSΘ�), are subsets of DJ(PTSΩΘ�).

In a pure type system there are no constants besides the sorts, and the only
“axioms” — i.e., the judgments that can appear in the leaves of the derivations
— are only ‘` Θ:�’ and ‘` Ω:Θ’. Buth both the rules and the models become
much easier to understand if we allow a few “impurities” of certain kinds; for
example, if N is a set, 0:N its element zero, and s : N → N is the successor
function, then s(s(0)) is an element of N, and we can derive ` s(s(0)) : N from
these hypotheses using only the rules of PTSΘ. We express this as:

` N : Θ ` 0 : N ` s : N→ N
` s(s(0)) : N

PTSΘ

where the double bar represents several derivation rules in PTSΘ; the expansion
of that derivation tree is:

` 0 : N ` s : N→ N
` s(0) : N

appΘΘ ` s : N→ N
` s(s(0)) : N

appΘΘ

••
The intuitive way to recognize that a judgment like

A : Θ, B : A→ Θ, f : Πa:A.Ba, a : A ` fa : Ba

makes sense is to “read it aloud” — i.e., translate it to English — and check
that its translated version “makes sense” — i.e., that all the variables that it
mentions have been declared and that all the typings are correct. Let’s see.

A : Θ, If we know the value of A, and it is an
element of Θ (i.e., A is a set),

B : A→ Θ, and if we know the value of B, and it
is an operation that maps each element
of A to a set (i.e., B is a family of sets,
indexed by A),

f : Πa:A.Ba, and if we know the value of f , and it is
a function that takes each element a of
A to an element of the set Ba,
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a : A and if we know the value of a, and it is
an element of the set A,

` fa : Ba then we know the value of fa, and it is
an element of the set Ba.

The Θ is one of our few constants; it is a “sort” (more on “sorts” later), and
it will play the role, very roughly, of the class of all sets. Mnemonic: “Θ” is for
“Thets”.
••

A : Θ, B : Θ, f : A→ B, a : A ` fa : B PTSΘ

A : Θ, B : A→ Θ, f : Πa:A.Ba, a : A ` fa : Ba PTSΘ�

A : Θ ` λa:A.a : A→ A PTSΘ

P : Θ ` λp:P.p : P → P PTSΩ

A : Θ ` (λA:Θ.λa:A.a)A : A→ A PTS�Θ

P : Ω ` (λP :Ω.λp:P.p)P : P → P PTSΘΩ

A : Θ ` λa:A.a : A→ A PTSΘ

P : Θ ` λp:P.p : P → P PTSΩ

A : Θ ` (λA:Θ.λa:A.a)A : A→ A PTS�Θ

P : Ω ` (λP :Ω.λp:P.p)P : P → P PTSΘΩ

[How to interpret a judgment like a:A, b:Ba, c:Cabc ` dabc:Dabc, where dabc is
a term, as a series of morphisms; actually to interpret these judgments categor-
ically we will need LCCCs, that can only be explained after hyperdoctrines...]

(Transcribed from the back of p.247 in “On Property-Like Structures”).

(A→ B is a hom-set, A
f→ B is a morphism)

(Conventions for downcasing arrows)
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