Ring objects

$(\mathbb{R}, 0,1,+, \cdot,-)$ can be seen as a "ring object" in Set, that is, as five functions from powers of \mathbb{R} to \mathbb{R}, one for each operation:

(we will never draw the subtraction $-: \mathbb{R} \rightarrow \mathbb{R}$).
These arrows must obey some equations -
for example, $(a+b) c=a c+b c$, that becomes:

$$
\begin{aligned}
& \frac{a, b, c}{a} \frac{a, b, c}{b} \\
& \frac{a+b}{(a+b) c} \frac{a, b, c}{c}= \\
& \frac{\frac{a, b, c}{a} \frac{a, b, c}{c}}{\frac{a c}{a c+b c}} \frac{\frac{a, b, c}{b}}{\frac{a, b, c}{c}} \\
& \frac{\frac{\mathrm{id}}{\pi_{1}} \frac{\mathrm{id}}{\pi_{2}}}{\left\langle\pi_{1}, \pi_{2}\right\rangle ;+} \frac{\mathrm{id}}{\pi_{3}} \\
&\left\langle\left(\left\langle\pi_{1}, \pi_{2}\right\rangle ;+\right), \pi_{3}\right\rangle ; \cdot=\frac{\frac{\mathrm{id}}{\pi_{1}} \frac{\mathrm{id}}{\pi_{3}}}{\left\langle\left(\left\langle\pi_{1}, \pi_{3}\right\rangle ; \cdot \cdot\right.\right.} \frac{\frac{\mathrm{id}}{\pi_{2}} \frac{\mathrm{id}}{\pi_{3}}}{\left\langle\pi_{2}, \pi_{3}\right\rangle ; \cdot} \\
& \frac{\left.\left(\left\langle\pi_{2}, \pi_{3}\right\rangle ; \cdot\right)\right\rangle ;+}{}
\end{aligned}
$$

As Set has finite products every
($\mathbb{R}, 0,1,+, \cdot,-$)-polynomial in n variables can be represented as a morphism $\mathbb{R}^{n} \rightarrow \mathbb{R}$; each of the ring axioms becomes the statement that two "($\mathbb{R}, 0,1,+, \cdot,-$)-polynomials" are equal.

A ring object: the tangent space

The tangent space of $\mathbb{R}, T \mathbb{R}$, has the same points as \mathbb{R}^{2}, and a ring structure, with special definitions for ' 1 ' and ' \because '. We will denote its points as $\left(a, a_{x}\right),\left(b, b_{x}\right), \ldots$
Here is its ring structure:

Another ring object: a ring of functions

For any set S the space of functions $S \rightarrow \mathbb{R}$ (a.k.a. " $\mathbb{R}^{S "}$) has a natural ring structure:

$$
\begin{aligned}
& 1 \underset{1}{\stackrel{0}{\rightleftarrows}}(S \rightarrow \mathbb{R}) \stackrel{+}{\longleftarrow}(S \rightarrow \mathbb{R})^{2} \\
& \begin{array}{l}
* \longmapsto(s \mapsto 0) \\
* \longmapsto(s \mapsto 1) \\
(s \mapsto a[s]+b
\end{array} \\
& \begin{array}{c}
(s \mapsto a[s]+b[s]) \longleftrightarrow(s \mapsto a[s],(s \mapsto b[s]) \\
(s \mapsto a[s] b[s]) \longleftrightarrow(s \mapsto a[s],(s \mapsto b[s])
\end{array}
\end{aligned}
$$

If $S \subseteq \mathbb{R}$ then some functions $S \rightarrow \mathbb{R}$ are "affine linear", in the sense that they can be characterized by two reals a "constant part" (' a ') and a "slope" (${ }^{\prime} a_{x}$ ').
Let's write these functions as $s \mapsto a+a_{x} s$.
Then the set of affine linear functions in $S \rightarrow \mathbb{R}$ is almost closed by the ring operations - the only problem is the second-order term in the result of the multiplication (underlined below):

$$
\begin{aligned}
* & (s \mapsto 0) \\
* & (s \mapsto 1) \\
& \left(s \mapsto a+b+\left(a_{x}+b_{x}\right) s\right) \longleftrightarrow \\
& \left(s \mapsto a b+\left(a_{x} b+a b_{x}\right) s+\underline{\left.a_{x} b_{x} s^{2}\right) \longleftarrow}(\ldots),(\ldots)\right)
\end{aligned}
$$

However, if $S \subseteq\left\{x \in \mathbb{R} \mid x^{2}=0\right\}$ then the second-order term disappears, and the set of affine linear functions

$$
\operatorname{AffLin}(S \rightarrow R):=\{f: S \rightarrow \mathbb{R} \mid f \text { is affine linear }\} \subseteq(S \rightarrow \mathbb{R})
$$

is a subring of $S \rightarrow \mathbb{R}$, and, furthermore, there is a ring homeomorphism $\varphi: T \mathbb{R} \rightarrow(S \rightarrow \mathbb{R})$...

A homomorphism between ring objects

" $\varphi: T \mathbb{R} \rightarrow(S \rightarrow \mathbb{R})$ is a ring homomorphism" means that for each of the five operations, $0,1,+, \cdot,-$, a certain square commutes...

(We do not draw the '-' arrows).
The less trivial case is the square for ' \because ':

As we are supposing that $S \subseteq\left\{x \in \mathbb{R} \mid x^{2}=0\right\}$, the term $a_{x} b_{x} s^{2}$ is zero, and that square commutes.

In \mathbb{R} the set of square-zero elements, $\left\{x \in \mathbb{R} \mid x^{2}=0\right\}$, is too small for this to be interesting - but the same constructions work for any ring R.

Example: $R:=\mathbb{R}[X, Y] /\left\langle X^{2}, Y^{2}\right\rangle$ - the ring of polynomials on two variables, ' X ' and ' Y ', with coefficients on \mathbb{R}, divided by an ideal to force $X^{2}=0$ and $Y^{2}=0$.
Notational convention: $\epsilon^{2}=0$ and $\delta^{2}=0$.
Then, using ' ϵ ' and ' δ ' as variables, we can write just " $\mathbb{R}[\epsilon, \delta]$ " instead of " $\mathbb{R}[\epsilon, \delta] /\left\langle\epsilon^{2}, \delta^{2}\right\rangle$ ".

Note that $(\epsilon+\delta)^{2}=\epsilon^{2}+2 \epsilon \delta+\delta^{2}=2 \epsilon \delta \neq 0-$ so $\epsilon+\delta$ is not a square-zero element in $\mathbb{R}[\epsilon, \delta]$.

Ring objects of line type

Fact (a.k.a. "Main Theorem", proved in the next slides):
When the arrow α below is invertible we can use the composite $\gamma:=\left(\alpha^{-1} ; \pi_{2}\right)$ to define, for any $f: R \rightarrow R$, its derivative $f^{\prime}: R \rightarrow R$, and these derivatives behave as expected:

$$
\begin{aligned}
(k f)^{\prime} & =k f^{\prime} \\
(f+g)^{\prime} & =f^{\prime}+g^{\prime}, \\
(f g)^{\prime} & =f^{\prime} g+f g^{\prime}, \\
(f \circ g)^{\prime} & =\left(f^{\prime} \circ g\right) g^{\prime} .
\end{aligned}
$$

The hypotheses are just these:
\mathbf{C} is a category with finite limits,
$(R, 0,1,+, \cdot,-)$ is a ring object in \mathbf{C},
and $D:=\left\{d x \in R \mid d x^{2}=0\right\}$
(that is definable as an equalizer)
is exponentiable.
(Stronger hypotheses, simpler to understand:
\mathbf{C} is cartesian closed and has pullbacks, $(R, 0,1,+, \cdot,-)$ is a ring object in \mathbf{C}.)
Then if the (definable) map $\alpha: R \times R \rightarrow R^{D}$ is invertible, we have a notion of "derivative" for functions $R \rightarrow R$, that behaves as expected.

A ring $(R, 0,1,+, \cdot,-)$ for which
$\alpha: R \times R \rightarrow R^{D}$ is invertible
is said to be "of line type".

Lemma: even when α^{-1} does not exist β is known...
More precisely: define β as "evaluate $d x \mapsto a+a_{x} d x$
at $d x:=0$ "; then $(\alpha ; \beta)=\pi_{1}$
If α^{-1} exists then $(\alpha ; \beta)=\pi_{1}$ iff $\beta=\left(\alpha^{-1} ; \pi_{1}\right)$.

