Ring objects

 $(\mathbb{R}, 0, 1, +, \cdot, -)$ can be seen as a "ring object" in **Set**, that is, as five functions from powers of \mathbb{R} to \mathbb{R} , one for each operation:

(we will never draw the subtraction $-: \mathbb{R} \to \mathbb{R}$).

These arrows must obey some equations —

for example, (a + b)c = ac + bc, that becomes:

a, b, c a, b, c			a, b, c	a, b, c	a, b, c	a, b, c
a b	a, b, c		a	c	b	c
a+b	c		a	c		bc
(a+b)c		=	ac+bc			
id id			id	id	id i	id
$\overline{\pi_1}$ $\overline{\pi_2}$	id		π_1	$\overline{\pi_3}$	π_2	τ_3
$\overline{\langle \pi_1, \pi_2 \rangle}; +$	$\overline{\pi_3}$		$\langle \pi_1$	$,\pi_3\rangle;\cdot$		$ \rangle;\cdot$
$\overline{\langle (\langle \pi_1, \pi_2 \rangle; +) \rangle}$	$,\pi_3\rangle;\cdot$	=	$\langle (\langle \pi_1, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2, \pi_2$	$(\langle a_3 \rangle; \cdot), (\langle a_3 \rangle; \cdot), $	$\langle \pi_2, \pi_3 \rangle$	$;\cdot) angle;+$

As ${\bf Set}$ has finite products every

 $(\mathbb{R}, 0, 1, +, \cdot, -)$ -polynomial in n variables can be represented as a morphism $\mathbb{R}^n \to \mathbb{R}$; each of the ring axioms becomes the statement that two " $(\mathbb{R}, 0, 1, +, \cdot, -)$ -polynomials" are equal.

A ring object: the tangent space

The tangent space of \mathbb{R} , $T\mathbb{R}$, has the same points as \mathbb{R}^2 , and a ring structure, with special definitions for '1' and '.'. We will denote its points as $(a, a_x), (b, b_x), \ldots$ Here is its ring structure:

$$1 \xrightarrow{0} T\mathbb{R} \stackrel{+}{\underbrace{\longrightarrow}} (T\mathbb{R})^{2}$$

$$* \xrightarrow{)} (0,0)$$

$$* \xrightarrow{)} (1,0)$$

$$(a+b,a_{x}+b_{x}) \stackrel{(a,a_{x})}{\longleftarrow} (a,a_{x}), (b,b_{x})$$

$$(ab,a_{x}b+b_{x}a) \stackrel{(a,a_{x})}{\longleftarrow} (a,a_{x}), (b,b_{x})$$

Another ring object: a ring of functions

For any set S the space of functions $S \to \mathbb{R}$ (a.k.a. " \mathbb{R}^{S} ") has a natural ring structure:

$$1 \xrightarrow{0} (S \to \mathbb{R}) \xrightarrow{+} (S \to \mathbb{R})^{2}$$

$$* \xrightarrow{} (s \mapsto 0)$$

$$* \xrightarrow{} (s \mapsto a[s] + b[s]) \xleftarrow{} (s \mapsto a[s], (s \mapsto b[s])$$

$$(s \mapsto a[s]b[s]) \xleftarrow{} (s \mapsto a[s], (s \mapsto b[s])$$

If $S \subseteq \mathbb{R}$ then some functions $S \to \mathbb{R}$ are "affine linear", in the sense that they can be characterized by two reals a "constant part" ('a') and a "slope" ('a_x').

Let's write these functions as $s \mapsto a + a_x s$.

Then the set of affine linear functions in $S \to \mathbb{R}$ is <u>almost</u> closed by the ring operations — the only problem is the second-order term in the result of the multiplication (underlined below):

$$\begin{array}{c} * \longmapsto & (s \mapsto 0) \\ * \longmapsto & (s \mapsto 1) \\ & (s \mapsto a + b + (a_x + b_x)s) < \longrightarrow \\ & (s \mapsto ab + (a_xb + ab_x)s + \underline{a_xb_xs^2}) < \longrightarrow (\ldots), (\ldots) \end{array}$$

However, if $S\subseteq\{\,x\in\mathbb{R}\mid x^2=0\,\}$ then the second-order term disappears, and the set of affine linear functions

 $\operatorname{AffLin}(S \to R) := \{ f : S \to \mathbb{R} \mid f \text{ is affine linear} \} \subseteq (S \to \mathbb{R})$

is a subring of $S \to \mathbb{R}$, and, furthermore, there is a ring homeomorphism $\varphi : T\mathbb{R} \to (S \to \mathbb{R})...$

3

A homomorphism between ring objects

" $\varphi: T\mathbb{R} \to (S \to \mathbb{R})$ is a ring homomorphism" means that for each of the five operations, $0, 1, +, \cdot, -$, a certain square commutes...

(We do not draw the '-' arrows). The less trivial case is the square for '.':

As we are supposing that $S \subseteq \{x \in \mathbb{R} \mid x^2 = 0\}$, the term $a_x b_x s^2$ is zero, and that square commutes.

In \mathbb{R} the set of square-zero elements, $\{x \in \mathbb{R} \mid x^2 = 0\}$, is too small for this to be interesting — but the same constructions work for any ring R.

Example: $R := \mathbb{R}[X, Y]/\langle X^2, Y^2 \rangle$ — the ring of polynomials on two variables, 'X' and 'Y', with coefficients on \mathbb{R} , divided by an ideal to force $X^2 = 0$ and $Y^2 = 0$.

Notational convention: $\epsilon^2 = 0$ and $\delta^2 = 0$. Then, using ' ϵ ' and ' δ ' as variables, we can write just " $\mathbb{R}[\epsilon, \delta]$ " instead of " $\mathbb{R}[\epsilon, \delta]/\langle \epsilon^2, \delta^2 \rangle$ ".

Note that $(\epsilon + \delta)^2 = \epsilon^2 + 2\epsilon\delta + \delta^2 = 2\epsilon\delta \neq 0$ so $\epsilon + \delta$ is not a square-zero element in $\mathbb{R}[\epsilon, \delta]$.

Ring objects of line type

Fact (a.k.a. "Main Theorem", proved in the next slides): When the arrow α below is invertible we can use the composite $\gamma := (\alpha^{-1}; \pi_2)$ to define, for any $f: R \to R$, its derivative $f': R \to R$, and these derivatives behave as expected:

$$(kf)' = kf'$$

$$(f+g)' = f'+g',$$

$$(fg)' = f'g+fg',$$

$$(f \circ g)' = (f' \circ g)g'.$$

$$R \stackrel{\beta}{\leftarrow} \alpha \stackrel{\beta}{\mid} \alpha^{-1} \stackrel{\gamma}{\leftarrow} \alpha$$

$$R \stackrel{\beta}{\leftarrow} \alpha \stackrel{\gamma}{\mid} \alpha^{-1} \stackrel{\gamma}{\leftarrow} R$$

$$a \stackrel{\beta}{\leftarrow} \alpha \stackrel{\gamma}{\leftarrow} \alpha^{-1} \stackrel{\gamma$$

The hypotheses are just these: **C** is a category with finite limits, $(R, 0, 1, +, \cdot, -)$ is a ring object in **C**, and $D := \{ dx \in R \mid dx^2 = 0 \}$ (that is definable as an equalizer) is exponentiable.

(Stronger hypotheses, simpler to understand: **C** is cartesian closed and has pullbacks, $(R, 0, 1, +, \cdot, -)$ is a ring object in **C**.)

Then if the (definable) map $\alpha : R \times R \to R^D$ is invertible, we have a notion of "derivative" for functions $R \to R$, that behaves as expected.

A ring $(R, 0, 1, +, \cdot, -)$ for which $\alpha : R \times R \to R^D$ is invertible is said to be "of line type".

Lemma: even when α^{-1} does not exist β is known... More precisely: define β as "evaluate $dx \mapsto a + a_x dx$ at dx := 0"; then $(\alpha; \beta) = \pi_1$. If α^{-1} exists then $(\alpha; \beta) = \pi_1$ iff $\beta = (\alpha^{-1}; \pi_1)$.