Index of the slides:
Non-Standard Analysis 2
Non-Standard Analysis (2) 3
Filters 4
Proper filters, big/small/medium sets, and ultrafilters 5
Cores and principal ultrafilters 6
Interpreting some sentences 7
Ultrafilters are evil 8
Partial functions with big domains 9
Diagram 10
Filters are enough 11

Non-Standard Analysis

The main idea:

Set is the "standard universe",
$\operatorname{Set}^{\mathbb{N}}$ is the "universe of $(\mathbb{N}$-) sequences",
$\operatorname{Set}^{\mathbb{N}} / \mathcal{N}$ is the "universe of \mathbb{N}-sequences modulo $\sim_{\mathcal{N}}$ ",
$\operatorname{Set}^{\mathbb{N}} / \mathcal{U}$ is the "universe of \mathbb{N}-sequences modulo $\sim \mathcal{U}$ ",
where $\sim_{\mathcal{N}}$ is the equivalence relation induced by the filter \mathcal{N}, and $\sim_{\mathcal{U}}$ is the equivalence relation induced by the ultrafilter \mathcal{U}, where $\sim_{\mathcal{U}}$ has bigger classes than $\sim_{\mathbb{N}}$.

Set \rightarrow Set $^{\mathbb{N}}$ takes 4 to $(4,4,4,4, \ldots)$,
$\operatorname{Set}^{\mathbb{N}} \rightarrow \boldsymbol{S e t}^{\mathbb{N}} / \mathcal{N}$ takes $\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$ to $\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right) / \mathcal{N}$, and equivalence classes of sequences tending to zero will behave as infinitesimals.
$\operatorname{Set}^{\mathbb{N}} / \mathcal{U}$ is a "non-standard universe".
$\boldsymbol{S e t}^{\mathbb{N}}$ and $\mathbf{S e t}^{\mathbb{N}} / \mathcal{U}$ are quite similar -
they both obey the same first-order formulas (!!!)
(with bounded quantifiers and all constants standard)
and we have "transfer theorems" that let us "transfer truths"
from Set to $\boldsymbol{S e t}^{\mathbb{N}} / \mathcal{U}$ and back.
And $\mathbf{S e t}^{\mathbb{N}} / \mathcal{U}$ has infinitesimals!!!

Non-Standard Analysis (2)

The general case:
Set is the "standard universe",
Set ${ }^{\mathbb{I}}$ is the "universe of (\mathbb{I}-) sequences",
Set ${ }^{\mathbb{I}} / \mathcal{F}$ is the "universe of \mathbb{I}-sequences modulo $\sim_{\mathcal{F}}$ ",
$\operatorname{Set}^{\mathbb{I}} / \mathcal{U}$ is the "universe of \mathbb{I}-sequences modulo $\sim \mathcal{U}$ ",
where $\sim_{\mathcal{F}}$ is the equivalence relation induced by the filter \mathcal{F}, and $\sim_{\mathcal{U}}$ is the equivalence relation induced by the ultrafilter \mathcal{U}, where $\sim_{\mathcal{U}}$ has bigger classes than $\sim_{\mathcal{F}}$.

\mathcal{F} is a filter on the index set \mathbb{I},
\mathcal{U} is an ultrafilter on \mathbb{I}, refining \mathcal{F} (i.e., $\mathcal{F} \subset \mathcal{U}$).

Filters

Definition: $\mathcal{F} \subseteq \mathcal{P}(\mathbb{I})$ is a filter on \mathbb{I} iff:
(i) $\mathbb{I} \in \mathcal{F}$,
(ii) \mathcal{F} is closed by binary intersections,
(iii) \mathcal{F} is "closed by supersets".

Our two archetypical filters:

$$
\begin{aligned}
& \mathcal{N} \subset \mathcal{P}(\mathbb{N}) \\
& \mathcal{N}:=\{I \subset \mathbb{N} \mid \mathbb{N} \backslash I \text { is finite }\} \\
& \mathcal{R}_{0} \subset \mathcal{P}(\mathbb{R}) \\
& \mathcal{R}_{0}:=\{I \subset \mathbb{R} \mid I \text { contains an open neighborhood of } 0\}
\end{aligned}
$$

\mathcal{N} is the "filter of cofinites" (on \mathbb{N}),
\mathcal{R}_{0} is the "filter of neighborhoods of 0 " (in \mathbb{R}).
Define the following relation on \mathbb{I}-sequences:

$$
a \sim_{\mathcal{F}} b \quad \Leftrightarrow \quad\left\{i \mid a_{i}=b_{i}\right\} \in \mathcal{F}
$$

Prop: $\sim_{\mathcal{F}}$ is an equivalence relation $\Rightarrow \mathcal{F}$ is a filter.

$$
\begin{array}{ll}
a \sim_{\mathcal{F}} a & \Rightarrow \mathcal{F} \ni\left\{i \mid a_{i}=a_{i}\right\}=\mathbb{I}, \\
a \sim_{\mathcal{F}} b \sim_{\mathcal{F}} c & \Rightarrow \mathcal{F} \ni\left\{i \mid a_{i}=c_{i}\right\} \supseteq\left\{i \mid a_{i}=b_{i}\right\} \cap\left\{i \mid b_{i}=c_{i}\right\},
\end{array}
$$

Look at this example (with $\mathbb{I}:=\mathbb{R}$):
f is 0 in $(-2,1), 1$ elsewhere, g is 0 everywhere,
h is 0 in $(-1,2),-1$ elsewhere, h^{\prime} is 0 in $(-1,2), 1$ in $(4,5),-1$ elsewhere;
f coincides with h exactly on $(-2,1) \cap(-1,2)$,
f coincides with h^{\prime} on a bigger set - the above plus $(4,5)$.
Prop: $\sim_{\mathcal{F}}$ is an equivalence relation $\Leftarrow \mathcal{F}$ is a filter.

Proper filters, big/small/medium sets, and ultrafilters

Def: a filter \mathcal{F} is proper when $\emptyset \notin \mathcal{F}$.
\mathcal{F} improper $\Leftrightarrow \emptyset \in \mathcal{F} \Leftrightarrow \mathcal{F}=\mathcal{P}(\mathbb{I}) \Leftrightarrow$
\Leftrightarrow all sequences are \mathcal{F}-equivalent.
\mathcal{N} is proper.
Def: $I \subset \mathbb{I}$ is \mathcal{F}-big when $I \in \mathcal{F}$.
$\mathbb{N}+4=\{4,5,6,7, \ldots\}$ is cofinite, and so \mathcal{N}-big.
Def: $I \subset \mathbb{I}$ is \mathcal{F}-small when $I \in \mathcal{F}$.
$\{0,1,2,3\}$ is finite, and so \mathcal{N}-small.
Def: $I \subset \mathbb{I}$ is \mathcal{F}-medium when I is neither \mathcal{F}-big, nor \mathcal{F}-small.
$2 \mathbb{N}=\{0,2,4,6, \ldots\}$ is \mathcal{N}-medium.
A proper filter \mathcal{F} divides $\mathcal{P}(\mathbb{I})$ in \mathcal{F}-big, \mathcal{F}-medium and \mathcal{F}-small sets.
Def: an ultrafilter is a filter \mathcal{F} with no \mathcal{F}-medium sets.
We will use \mathcal{U} to denote ultrafilters.
\mathcal{N} is not an ultrafilter.
Two proper filters over $\mathbb{I}:=\{\alpha, \beta, \gamma\}$:
The one at the right is an ultrafilter.

For $\mathcal{A} \subset \mathcal{P}(\mathbb{I})$,
Def: $\uparrow \mathcal{A}:=\left\{A^{\prime} \mid A \subseteq A^{\prime} \subseteq \mathbb{I}\right.$, for some $\left.A \in \mathcal{A}\right\}$
$\uparrow \mathcal{F}=\mathcal{F}$.
Def: $\downarrow \mathcal{A}:=\left\{A^{\prime} \mid A^{\prime} \subseteq A\right.$, for some $\left.A \in \mathcal{A}\right\}$
The set of \mathcal{F}-small sets is equal to its ' \downarrow '.
Def: $\bigcap_{\text {fin }} \mathcal{A}:=\left\{A_{1} \cap \ldots \cap A_{n} \mid n \in \mathbb{N}, A_{1}, \ldots, A_{n} \in \mathcal{A}\right\}$
where we define that $A_{1} \cap \ldots \cap A_{n}=\mathbb{I}$ when $n=0$.
Fact: for any $\mathcal{A} \subset \mathcal{P}(\mathbb{I})$,
$\bigcap_{\text {fin }} \uparrow \mathcal{A}=\uparrow \bigcap_{\text {fin }} \mathcal{A}$ is a filter.
$\mathcal{N}=\uparrow \bigcap_{\text {fin }}\{\mathbb{N}, \mathbb{N}+1, \mathbb{N}+2, \mathbb{N}+3, \ldots\}$
$\mathcal{R}_{0}=\uparrow \bigcap_{\text {fin }}\left\{(-1,1),\left(-\frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{3},-\frac{1}{3}\right), \ldots\right\}$

Cores and principal ultrafilters

The core of a filter \mathcal{F} is $\bigcap \mathcal{F}$.
\mathcal{N} has empty core.
\mathcal{R}_{0} has core $=\{0\}$, but this can be "fixed" by removing $\{0\}$ from each \mathcal{R}_{0}-big set we get a filter over $\mathbb{R} \backslash\{0\}$ - the filter of "punctured neighborhoods" of $0 \in \mathbb{R}$, that has empty core.
(By the way: \mathcal{N} is a filter of punctured neighborhoods of $\infty \in \mathbb{N}^{*}$ in $\mathbb{N}^{*} \backslash\{\infty\}$.)

Any ultrafilter refining \mathcal{N} has empty core.
An ultrafilter with a non-empty core has a single point in its core.
An ultrafilter with a non-empty core is called "principal".
Principal ultrafilters are silly: if $\mathcal{U}=\uparrow\{a\}$
then the equivalence relation $\sim \mathcal{U}$ pays attention only
to the index a, and $\operatorname{Set} \cong \boldsymbol{S e t}^{\mathbb{I}} / \mathcal{U}$.

When \mathcal{U} is non-principal
every infinite set in Set
gets new ("non-standard") elements
after the passage to $\boldsymbol{S e t}^{\mathbb{I}} / \mathcal{U}$.

Interpreting some sentences

Take $\omega:=(1,2,3,4, \ldots)$ in $\boldsymbol{S e t}^{\mathbb{N}} / \mathcal{N}$.
ω is bigger than any standard natural:
$\omega>2 \equiv(\lrcorner,\lrcorner, \top, \top, \ldots) \sim_{\mathcal{N}}(\top, \top, \top, \top, \ldots) \equiv \top$
Take $\varepsilon:=\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$ in $\boldsymbol{S e t}^{\mathbb{N}} / \mathcal{N}$.
ε is smaller than any standard positive real:
$\varepsilon<\frac{1}{2} \equiv(\exists, \exists, \top, \top, \ldots) \sim_{\mathcal{N}} \top$.
$f(a)$ is $\left(f_{1}\left(a_{1}\right), f_{2}\left(a_{2}\right), f_{3}\left(a_{3}\right), \ldots\right)$.
$\forall a, b \in \mathbb{R} . a b=b a$
$\forall x \in(0,1) \cdot x^{2} \in(0, x)$
$\forall a, b \in \mathbb{R} . a b=0 \supset(a=0 \vee b=0)$

Ultrafilters are evil

Take a denumerable family of sets of indices, $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$, for example $\mathcal{A}:=\{\mathbb{N}, 2 \mathbb{N}, 3 \mathbb{N}, 4 \mathbb{N}, \ldots\}$.
Then $\uparrow \bigcap_{\text {fin }} \mathcal{A}$ is not a non-principal ultrafilter.
Let's see why.
Take $\mathcal{A}^{\prime}:=\left\{A_{1}, A_{1} \cap A_{2}, A_{1} \cap A_{2} \cap A_{3}, \ldots\right\} ;$
build $\mathcal{A}^{\prime \prime}$ from that by removing the repetitions.
In the non-trivial case, $\mathcal{A}^{\prime \prime}=\left\{A_{1}^{\prime \prime}, A_{2}^{\prime \prime}, A_{3}^{\prime \prime}, \ldots\right\}$ is infinite.
Look at
$\left(\mathbb{I} \backslash A_{1}^{\prime \prime}\right) \cup\left(A_{2}^{\prime \prime} \backslash A_{3}^{\prime \prime}\right) \cup\left(A_{4}^{\prime \prime} \backslash A_{5}^{\prime \prime}\right) \cup \ldots$ and
$\left(A_{1}^{\prime \prime} \backslash A_{2}^{\prime \prime}\right) \cup\left(A_{3}^{\prime \prime} \backslash A_{4}^{\prime \prime}\right) \cup\left(A_{5}^{\prime \prime} \backslash A_{6}^{\prime \prime}\right) \cup \ldots-$
they are both medium sets.
Attempts to build non-principal explicitly are bound to fail.
To build non-principal ultrafilters we need a weak form of AC.
Halpern 1964: the "boolean prime ideal theorem" is independent from AC.

Partial functions with big domains

If (X, \mathcal{X}) and (Y, \mathcal{Y}) are filtered spaces -
i.e., \mathcal{X} is a filter over X
and \mathcal{Y} is a filter over Y -
then a partial function $f: X \rightarrow Y$ is said
to have $(\mathcal{X}$-)big domain when its domain is \mathcal{X}-big.
Shorter name: a "big partial function" is a partial function with a big domain. Even shorter: \rightarrow "big function".

Filter-continuity

A partial function $f: X \rightarrow Y$ is (filter-)continuous when the inverse image of every \mathcal{Y}-big set is \mathcal{X}-big.
(Being "big" is weaker than that: just $f^{-1}(Y) \in \mathcal{X}$.)
Two big functions f, g are equivalent when they coincide on a big set.

Big continuous functions compose.
Moreover: if $f \sim_{\mathcal{X}} f^{\prime}$ and $g \sim_{\mathcal{Y}} g^{\prime}$ are all big and continuous, then $g \circ f \sim \mathcal{X} g^{\prime} \circ f^{\prime}$ is big and continuous.

Diagram

2008filterp-slides September 17, 2008 07:55

Filters are enough

Main theorem
Change of base
Filter-continuity is the same as continuity at the chosen point:

$$
\left(\mathbb{R}, \mathcal{R}_{0}\right) \rightarrow\left(X, \mathcal{X}_{x_{0}}\right)
$$

Filter-continuity is the same as infinitesimality:

$$
(\mathbb{I}, \mathcal{F}) \rightarrow\left(\mathbb{R}, \mathcal{R}_{0}\right)
$$

(general case: topological spaces)
Definition: the natural infinitesimal on a (standard) filtered space $\left(X, \mathcal{X}_{x_{0}}\right)$, that we will denote by $x_{1}^{\natural} \stackrel{\natural}{\sim} x_{0}$, is the identity function $x_{1}^{\natural}=\operatorname{id}:\left(X, \mathcal{X}_{x_{0}}\right) \rightarrow$ $\left(X, \mathcal{X}_{x_{0}}\right)$; seen as an infinitesimal, it lives in $\boldsymbol{\operatorname { S e t }}^{X} / \mathcal{X}_{x_{0}}$. As it corresponds to the identity map, any other infinitesimal $x_{1} \sim x_{0}$ - in the diagram below we take an x_{1} living in $\mathbf{S e t}^{\mathbb{I}} / \mathcal{F}$ - factors through x_{1}^{\natural} it in a unique way; this suggests that there is a kind of "change of base" operation between filter-powers.

Now, for any $f:\left(X, \mathcal{X}_{x_{0}}\right) \rightarrow\left(Y, \mathcal{Y}_{y_{0}}\right)$ taking x_{0} to y_{0}, this holds:

Key theorem:

(i) f is continuous at x_{0}
\Leftrightarrow (ii) for $(\mathbb{I}, \mathcal{F}):=\left(X, \mathcal{X}_{x_{0}}\right), x_{1}^{\natural} \stackrel{\natural}{\sim} x_{0}$, we have $f\left(x_{1}^{\natural}\right) \sim f\left(x_{0}\right)$
\Leftrightarrow (iii) for all $(\mathbb{I}, \mathcal{F})$ and $x_{1} \sim x_{0}$, we have $f\left(x_{1}\right) \sim f\left(x_{0}\right)$.

Proof: (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are obvious from what we've seen before that the composite of continuous maps between filtered spaces is continuous. For $\neg(\mathrm{i}) \Rightarrow \neg$ (ii), as f is not continuous at x_{0}, we can choose a $Y^{\prime} \in \mathcal{Y}_{y_{0}}$ such that $f^{-1}\left(Y^{\prime}\right) \notin \mathcal{X}_{x_{0}}$; but then $y_{1}^{-1}\left(Y^{\prime}\right)=x_{1}^{\natural^{-1}}\left(f^{-1}\left(Y^{\prime}\right)\right) \notin \mathcal{X}_{x_{0}}$, and $f\left(x_{1}^{\natural}\right) \nsim f\left(x_{0}\right)$.

For $\neg(\mathrm{i}) \Rightarrow \neg($ iii $)$, take $(\mathbb{I}, \mathcal{F}):=\left(X, \mathcal{X}_{x_{0}}\right), x_{1}:=x_{1}^{\natural}$, and reuse the proof of $\neg(\mathrm{i})$ $\Rightarrow \neg$ (ii).

In texts about Non-Standard Analysis the infinitesimal characterization of continuity is presented in another form:
(i) f is continuous at x_{0}
\Leftrightarrow (iv) for all $(\mathbb{I}, \mathcal{U})$ and $x_{1} \sim x_{0}$, we have $f\left(x_{1}\right) \sim f\left(x_{0}\right)$.
Clearly, (iii) \Rightarrow (iv); but to show that (iv) implies the rest we need to be in a universe with enough ultrafilters.

Each of the cells in the diagram in sec. 5 is an instance of the key theorem maybe slightly disguised. For example, to prove that $g(b+\mathbf{o})=\left(g^{\prime}(b)+\mathbf{o}^{\prime}\right) \mathbf{o}$ we may start with $\frac{g(b+\mathbf{o})}{\mathbf{o}}-g^{\prime}(b)=\mathbf{o}^{\prime}$, for an infinitesimal $\mathbf{o} \neq 0$, i.e., $\lim _{\epsilon \rightarrow 0} \frac{g(b+\mathbf{o})}{\mathbf{o}}$.

What really matters, when we look at the diagrams, is that for any $(\mathbb{I}, \mathcal{F})$ and for any infinitesimal $x_{1}:(\mathbb{I}, \mathcal{F}) \rightarrow\left(X, \mathcal{X}_{x_{0}}\right)$ - maybe obeying some condition, like $\mathbf{o} \neq 0$ - there is a unique "adequate" infinitesimal $y_{1}:(\mathbb{I}, \mathcal{F}) \rightarrow\left(Y, \mathcal{Y}_{y_{0}}\right)$; we want to "represent" the operation $x_{1} \mapsto y_{1}$ as a function $f:\left(X, \mathcal{X}_{x_{0}}\right) \rightarrow\left(Y, \mathcal{Y}_{y_{0}}\right)$, and we can do that trivially by setting $(\mathbb{I}, \mathcal{F}):=\left(X, \mathcal{X}_{x_{0}}\right), x_{1}:=x_{1}^{\natural}$; then we can take $f:=y_{1}$, and the f obtained in this way works in the general case.

Applying this idea to the composite of all cells in the example in sec. 5, we get this:

where $i \in(\mathbb{I}, \mathcal{F}), n, \omega \in(\mathbb{N}, \mathcal{N})$, and all the other "points" live in $\left(\mathbb{R}, \mathcal{R}_{0}\right)$. Note that the ' \mapsto ' arrows in this diagram do not stand for functions in the usual sense, but for functions between filtered spaces (not necessarily total). Incidentally, all of them are continuous.

