
1

Downcasing types
(Introductory notes)

Eduardo Ochs
eduardoochs@gmail.com
http://angg.twu.net/
http://angg.twu.net/math-b.html
http://angg.twu.net/LATEX/2007dnc-sets.{tex,dvi,pdf}

Written: 2007.
LATEXing and minor additions and revisions: may 2008.
Current version: 2008may20 (see the footer)

Index of the slides:

Main idea: lifting archetypal proofs . 2
Lifting set-like notation . 3
Starting point: the Curry-Howard Isomorphism . 4
Main ideas . 5
Reconstructing the types and the dictionary from trees 6
Contexts and discharges .7
Contexts and discharges (2) . 8
Expanding trees . 9
Theorems for Free . 10
Ambiguity plays on our side (usually) . 11
Informal coherence .12
Informal coherence: examples . 13
Informal coherence: examples (2) . 14
Downcasing functors . 15
Products via natural transformations . 16
Downcasing Natural Transformations . 17
Translating bigger trees . 18
Downcasing categorical diagrams (in general) . 19
Why we want to allow pseudopoints .20
Maps between subobjects: the general case .21
Quantifiers, categorically . 22
More notes about archetypes (1) . 23
More notes about archetypes (2) . 24
More notes about archetypes (3) . 25

2007dnc-sets June 24, 2008 13:31

2

Main idea: lifting archetypal proofs

Take a proof of some general statement.

Now specialize it to a particular case.

‘‘Specializing’’ is somehow like doing a

projection - some distinctions collapse,

some details are lost -

Here we are concerned with the opposite

of specializing proofs.

We start with an ‘‘archetypal proof’’ -

a proof of a certain very particular case,

done in a certain language - and then we

/change our dictionary a bit/ - and some

terms change meaning; and the same proof

becomes a proof of the general case -

We call this ‘‘lifting’’. Archetypal proofs

/lift/ to more general proofs, and when this

happens we get general proofs done in a

language inherited from the archetypal cases.

My favorite examples of such liftings of

proofs are for proofs in Categorical

Semantics.

The fist significant example will be this

one (we call it ‘‘CCC<->λ1’’):

The Cartesian-Closed Categories (CCCs)

are exactly the categories where we can

interpret the simply-typed λ-calculus
(‘‘System λ1’’).

After ‘‘CCC<->λ1’’ we will see ‘‘Hyp<->LPCE’’:

The hyperdoctrines are exactly the

categories in which we can interpret

(a certain system of intuitionistic, typed)

first-order logic (‘‘LPCE’’).

2007dnc-sets June 24, 2008 13:31

3

Lifting set-like notation

Our approach:

‘Set’ is our archetypal CCC.

Sets are also our archetypal model for λ1.
Most of the proof - even most of the details

of the statement of the theorem! - will appear

more or less naturally from taking the

diagrams below, done in the language of

‘‘downcased types’’ (DNC) and translating

them in several ways.

--| a |-- a a,b <==== a

/ - \ - - -

/ | \ | | <--> |

v v v v v v

b <---| b,c |---> c * c ===> b|->c

--| P |-- P P&Q <==== P

/ - \ - - -

/ | \ | | <--> |

v v v v v v

Q <---| Q&R |---> R > R ====> Q
��R

Later, Set (or, more precisely, the fibration Set^>->),

we will also be our archetypal hyperdoctrine.

2007dnc-sets June 24, 2008 13:31

4

Starting point: the Curry-Howard Isomorphism

There is a correspondence between

Natural Deduction trees and

terms of the simply-typed λ-calculus (λ1).

Example:

P&Q d:A×B
--- -----

P&Q Q Q
��R d:A×B π’d:B f:B->C

--- ---------- ----- ---------------

P R πd:A f(π’d):C
----------- ------------------

P&R <πd,f(π’d)>:A×C

Sometimes the usual notation for type theory/

λ-calculus feels too verbose.

The DNC notation started as an informal reasoning tool -

I used it in my private notes as a system of abbreviations

for λ-calculus.

DNC grew with time and started to look more formal...

It got special arrow symbols (a.k.a. ‘‘connectives’’ - ‘=>’ and

‘-.>’) to represent functors and natural transformations.

In 2001 I found that ‘=>’ and ‘-.>’ had introduction rules

besides the obvious elimination rules (think in introd and

elim of ‘&’, ‘
��’, ‘\or’, etc in Natural Deduction) -

so DNC could be the basis for a system of natural deduction

for categories.

DNC never became formal enough to be a ‘‘system’’, and nowadays it

lives a more unpretentious existence as an auxiliary language for

type theory and category theory (esp. categorical semantics).

I changed the meaning for ‘‘DNC’’ -

from a sytem for ‘‘Natural Deduction for Categories’’ to

a notation of ‘‘DowNCased types’’.

2007dnc-sets June 24, 2008 13:31

5

Main ideas

Long names for variables

In {(n,r)∈N×R | r^2=n}

the (n,r) is the name of a variable -

N×R is the space of pairs made of a

natural number and a real.

A dictionary

Define n := π (n,r)

r := π’(n,r)
(r,n) := <r,n>

The syntactical distinction between variables and terms

We’ve sacrificed it.

Also, without the dictionary there is no way to tell from

(n,r), n, r, (r,n) which of them are more primitive than

the others.

Downcasing

The default name for a variable ranging over A is ‘a’.

The default (long!) name for a variable ranging over A×B is ‘(a,b)’.

Well-formed formulas, expressions, etc

We don’t have these notions in DNC.

Anything can be a DNC ‘‘name’’. 8-(

Spaces of functions

In f:A->B we will read ‘‘A->B’’ as B^A

and the ‘‘:’’ as the ‘:’ of Type Theory.

(For mathematicians: ‘:’ is roughly like ‘∈’, but ‘‘f:A->B’’

means also ‘‘‘f’ is of type ‘A->B’’’, and each term has

a single type. We are not interesting in ‘\subset’, ‘\subseteq’, etc).

Notation for functions

An ‘a|->b’ is an element of A->B.

An ‘a|->b’ is a function that takes each ‘a’ to a ‘b’.

2007dnc-sets June 24, 2008 13:31

6

Reconstructing the types and the dictionary from trees

d:A×B

d:A×B π’d:B f:B->C

----- ---------------

πd:A f(π’d):C

<πd,f(π’d)>:A×C

a,b

a,b b b|->c a := π (a,b)

--- ---------- b := π’(a,b)
a c c := (b|->c)(b)

----------- a,c := <a,c>

a,c

Now add ‘‘a,b := d’’ and ‘‘b|->c := f’’ and we get

the λ-calculus terms back from the DNC tree.

Note that we obtain the types back by uppercasing

the DNC ‘‘terms’’ -

‘|->’ is uppercased to ‘->’,

‘,’ to ‘×’, etc.

2007dnc-sets June 24, 2008 13:31

7

Contexts and discharges

Each subtree of a Natural Deduction tree/derivation/proof

corresponds to a smaller proof contained in a bigger one.

For each node of a tree let’s look at the tree above the

node, and make its hypotheses explicit.

P&Q P&Q|-P&Q

--- --------

P&Q Q Q
��R P&Q|-P&Q P&Q|-Q Q

��R|-Q ��R
--- ---------- -------- --------------------

P R P&Q|-P Q
��R,P&Q|-R

----------- -------------------------

P&R Q
��R,P&Q|-P&R

Now we can understand the ‘‘
��-introduction’’ rule;

it involves a discharge.

[P&Q]^1 P&Q|-P&Q

------- --------

[P&Q]^1 Q Q
��R P&Q|-P&Q P&Q|-Q Q

��R|-Q ��R
------- --------- -------- --------------------

P R P&Q|-P Q
��R,P&Q|-R

------------- -------------------------

P&R Q
��R,P&Q|-P&R

-------1 ------------

P&Q
��P&R Q

��R|-P&Q ��P&R
Below the bar marked with ‘‘1’’ the hypotheses marked with

‘‘[·]^1’’ should no longer be in the list of hypotheses -

they’ve been ‘‘discharged’’ (into the conclusion).

2007dnc-sets June 24, 2008 13:31

8

Contexts and discharges (2)

Let’s look at the functional side of this (Curry-Howard):

[a,b]^1 (a,b)|-(a,b)

------- ------------

[a,b]^1 b b|->c (a,b)|-(a,b) (a,b)|-b (b|->c)|-(b|->c)

------- ----------- ------------ ---------------------------

a c (a,b)|-a (b|->c),(a,b)|-c

--------------- ---------------------------------------

a,c (b|->c),(a,b)|-(a,c)

---------1 --------------------

a,b|->a,c (b|->c)|-(a,b|->a,c)

[p]^1 p|-p

----- ------

[p]^1 π’p f p|-p p|-π’p f|-f

----- --------- ----- ---------------

πp f(π’p) p|-πp f,p|-f(π’p)
----------------- ----------------------

<πp,f(π’p)> f,p|-<πp,f(π’p)>
--------------1 -----------------1

λp.<πp,f(π’p)> f|-λp.<πp,f(π’p)>

The ‘‘
��-introduction’’ rule (last bar) corresponds to introducing a ‘λ’;

one variable ceases to be free, and is removed from the list of hypotheses.

One way of reading ‘‘f,p|-<πp,f(π’p)>’’ -

or ‘‘f:B->C,p:A×B|-<πp,f(π’p)>:A×C’’ - is:

if we know the value of f and p (points of B->C and A×B)
we know the value of <πp,f(π’p)> (a point of A×C).

2007dnc-sets June 24, 2008 13:31

9

Expanding trees

a,b a,b:A×B
--- |--------------> -------

a a:A

- - - -

| \ | \

| v | v

| a,b|-a,b | a,b:A×B|-a,b:A×B
| -------- |---------> ----------------

| a,b|-a | a,b:A×B|-a:A
| - | - -

| | | | \

| | | | v

| | | | (a,b|-a,b):A×B->A×B
| | | | -------------------

p | p:A×B | (a,b|-a):A×B->A
-- |- - - | - - - -> ----- | -

πp | πp:A | |

- | - | |

\ | \ | |

v v v v |

p|-p p:A×B|-p:A×B |

----- |- - - - - - -> ------------ |

p|-πp p:A×B|-πp:A |

- - |

\ \ |

v v v

id id_{A×B}:A×B->A×B
--- |- - - - - - - -> -----------------

π_0 π_{0\,A,B}:A×B->A

2007dnc-sets June 24, 2008 13:31

10

Theorems for Free

From the ‘‘Theorems for Free’’ paper (Wadler 1989):

* All closed terms of type ∀A.∀B.(A×B->B×A)
obey a certain theorem

* Corollary: all terms of type ∀A.∀B.(A×B->B×A)
are the flip function.

Something similar (but much looser) happens in DNC:

‘a,b|->b,a’ has a ‘‘natural definition’’ -

apply Curry-Howard, prove P&Q
��Q&P, translate the

proof to λ-calculus in DNC notation -

[P&Q]^1 [P&Q]^1 [a,b]^1 [a,b]^1 [p]^1 [p]^1

------- ------- ------- ------- ----- -----

Q P b a π’p πp
----------- ----------- ----------

Q&P b,a <π’p,πp>
-------1 ---------1 -----------1

P&Q
��Q&P a,b|->b,a λp.<π’p,πp>

and an argument using normalization of ND proofs

can be used to show that all other ND proofs (= λ-terms)
are equivalent to that one.

In DNC we won’t be interested in the ‘‘uniqueness’’ part

very often, though.

2007dnc-sets June 24, 2008 13:31

11

Ambiguity plays on our side (usually)

a,b a,b p p

--- --- -- --- a := π (a,b)

a b πp π’p b := π’(a,b)
------- -------- a,b := <a,b>

a,b <πp,π’p>

Apparently the DNC tree on the left, above

introduces a ‘‘secondary definition’’ for a,b

and a circularity in the dictionary, and such

things have to be avoided at all costs -

But we can be careful and interpret each tree

as a term, and in

a,b a,b p p

--- --- -- ---

a b πp π’p
------- --------

a,b = a,b <πp,π’p> = p

what happens is that we have two different

‘‘natural constructions’’ for a,b from a,b,

and we’re saying that the two ‘‘must give the

same result’’, i.e., <πp,π’p> = p...

In many contexts we will have two different

natural constructions for a DNC ‘‘term’’ with

a certain name, and we will want to say that

the two constructions give the same result

(sometimes this will be an axiom, sometimes

a theorem, sometimes a hypothesis) -

We will sometimes use the expression ‘‘is well

defined’’ (notation: ‘‘wd[·]’’) in a funny sense:

‘‘wd[a,b]’’ will mean ‘‘the two obvious natural

constructions for a,b give the same result’’.

2007dnc-sets June 24, 2008 13:31

12

Informal coherence

A /coherence theorem/ says that

there is exactly one entity

of a given type...

For example: that ‘‘there is

exactly one map A×B->B×A’’ -

the flip function.

Coherence would allow us to say

‘‘_the_ map a,b|->a,b’’ instead of

‘‘_a_ map a,b|->a,b’’.

We have something weaker in DNC:

a dictionary, and a vague notion

of assigning ‘‘natural meanings’’

to names.

Each ‘‘natural meaning’’ comes

from a ‘‘natural construction’’.

Instead of proving ‘‘real’’ coherence -

e.g., ‘‘all natural constructions for

a,b|->b,a give the same result’’ -

we will use something MUCH weaker:

‘‘all the ‘obvious’ natural

constructions for a,b|->b,a

(in a given context - given

some base objects,

operations, and diagrams)

yield the same result.’’

2007dnc-sets June 24, 2008 13:31

13

Informal coherence: examples

If we have set meanings for the

four arrows in the diagram below,

f’

A ----> B a |---> b

| | - -

g’ | | g | |

v v v v

C ----> D c |---> d

f

then we have two different ‘‘natural

constructions’’ for a|->d, each one

giving a (possibly different)

‘‘natural meaning’’ for a|->d...

‘‘wd[\alpha]’’ (pronounced:

‘‘\alpha is well-defined’’)

means:

‘‘all the obvious natural

constructions for \alpha

yield the same result’’

In the diagram above

‘‘\wd[a|->d]’’ means f’;g=g’;f

(i.e., a|->b|->d = a|->c|->d)

i.e.: ‘‘the square commutes’’.

Giving meaning to a ‘‘wd’’ expression

involves deciding which are the

‘‘obvious natural constructions’’.

2007dnc-sets June 24, 2008 13:31

14

Informal coherence: examples (2)

Each sentence ‘‘wd[\alpha]’’ is a

proposition whose precise meaning

is given as an entry in the dictionary.

Another example: in

a |---> b |---> c

- - -

| | |

v v v

d |---> e |---> f

- - -

| | |

v v v

g |---> h |---> i

we have:

wd[a|->e] & wd[b|->f] &

wd[d|->h] & wd[e|->i] => wd[a|->i].

Note that:

wd[a|->i] := (a|->b|->c|->f|->i =

a|->b|->e|->f|->i =

a|->b|->e|->h|->i =

a|->d|->e|->f|->i =

a|->d|->e|->h|->i =

a|->d|->g|->h|->i).

Each of the other ‘wd[·]’s is an equality

between only two composites (not six).

2007dnc-sets June 24, 2008 13:31

15

Downcasing functors

A functor F:\catC->\catD is composed of two operations:

F_0 - its action on objects, and

F_1 - its action of morphisms.

Fix a set B, and look at these diagrams, for the functors

(×B):Set->Set and (B->):Set->Set:

A×B <---| A a,b <==== a

- - - -

f×B| <-| |f | <-| |

v v v v

A’×B <---| A’ a’,b <==== a’

C |----> B->C c ====> b|->c

- - - -

g| |-> |B->g | |-> |

v v v v

C’ |---> B->C’ c’ ===> b|->c’

Functors act on two levels, so we will use a double arrow -

‘=>’ - to denote them. Their names in DNC will come from

their action on objects:

A|->A×B a=>a,b

C|->B->C c=>b|->c

Their ‘‘syntactical actions’’ on morphisms can be derived

from their names: a=>a,b adds a ‘‘,b’’ to the name of each

object, so it takes a|->a’ to a,b|->a’,b; same for c=>b|->c.

To find the ‘‘real action’’ of (×B)=(a=>a,b) on morphisms,

look for a natural construction of a,b|->a’,b from a|->a;

f×B = a,b|->a’,b = λp.<f(πp),π’p>.

Note that a functor a=>a,b does not take ‘a’s into ‘a,b’s,

like an arrow a|->a,b would do; instead, it takes the

whole space of ‘a’s, E[a]=A, into the space of ‘a,b’s,

E[a,b]=A×B - (×B)_0 = λA:Sets.A×B.

2007dnc-sets June 24, 2008 13:31

16

Products via natural transformations

Any diagram b <--| p |--> c induces an operation that

takes any object A to a map of sets

(A->P) -> (A->B)×(A->C)

/ a \ / a \

| - | | - - |

| | | |--> | / \ |

| v | | v v |

\ p / \ b c /

2007dnc-sets June 24, 2008 13:31

17

Downcasing Natural Transformations

Between two contravariant functors,

Hom(-,P): Set^op -> Set

A |-> A->P

a^op => a|->p

Hom(-,B)×Hom(-,C): Set^op -> Set

A |-> (A->B)×(A->C)
a^op => (a|->b),(a|->c)

The natural transformation

T: Hom(-,P) -> Hom(-,B)×Hom(-,C)

takes each object A of Set (or: an object of Set^op)

to a function:

TA: (A->P) -> ((A->B)×(A->C))

We will represent this natural transformation T in DNC

by just downcasing the triangle:

A

- - -

/ | \

v v v

(A->P) -> ((A->B)×(A->C))

2007dnc-sets June 24, 2008 13:31

18

Translating bigger trees

a,b a,b|-a,b

--- --------

a,b a a|-b|->c a,b|-a,b a,b|-a a|-b|->c

--- -------------- |---> -------- -------------------

b b|->c a,b|-b a,b|-b|->c

-------------- ------------------------

c a,b|-c

- -

| |

v v

p a|-f(a) p|-p a|-f(a)

-- ---------ren ----- ---------ren

p πp πp|-f(πp) p|-p p|-πp πp|-f(πp)
--- --------------- |---> ------ ------------------

π’p f(πp) p|-π’p p|-f(πp)
---------------- ---------------------

f(πp)(π’p) p|-f(πp)(π’p)

id

--

id π f

-- -------

π’ π;f

<π;f,π’>;ev = f^v

2007dnc-sets June 24, 2008 13:31

19

Downcasing categorical diagrams (in general)

One day I realized that the same notation that I was using for sets

did also work - with no changes in the syntax, only in the semantics -

for categories.

Here’s a comparison; in the second situation, at the right, \catC is

an arbitrary category.

A is a set | A is an object of \catC, A∈|\catC|
B is a set | B is an object of \catC, B∈|\catC|

|

A ---> B (a function) | A ---> B (a morphism)

a |--> b (a function) | a |--> b (a morphism)

|

A is the space of ‘a’s | Now:

B is the space of ‘b’s | ‘‘an ‘a’’’ is an abuse of language

A = E[a] | ‘‘a ‘b’’’ is an abuse of language

B = E[b] | ‘a|->b’ has semantics - it’s a morphism -

| but ‘a’ and ‘b’ have no semantics

An ‘a’ is a point of A, |

a ‘b’ is a point of B, | ‘a’s and ‘b’s are not points in this case,

a∈A, b∈B. | just ‘‘pseudopoints’’, and pseudopoints

| don’t need to exist - they may be just

| syntactical devices

|

| To enforce the distinction we say

| ‘‘object of’’ instead of ‘‘space of’’

| and we write O[·] instead of E[·]
|

| A is the objects of ‘a’s

| B is the objects of ‘b’s

| A = O[a]

| B = O[b]

Note: it’s almost impossible to understand this is the general case

without examples...

2007dnc-sets June 24, 2008 13:31

20

Why we want to allow pseudopoints

For example, for subobjects.

Implications can be seen as inclusions.

∀a∈A.P(a) ��Q(a)
{a∈A|P(a)} \subset {a∈A|Q(a)}

Categorically,

{a|P(a)} ------> {a|Q(a)} /{a|P(a)}\ /{a|Q(a)}\

v v | v | | v |

| | | | | ---> | | |

v v | v | | v |

A -------------> A \ A / \ A /

This is a morphism between two objects of Set^>->, where

Set^>-> is the category of monic arrows between objects of Set.

Set^>-> is also called Sub(Set) - the category of subojects of Set.

Notational trick:

/{a|P(a)}\ /{a|Q(a)}\

| v | | v |

{a||P(a)} ---> {a||Q(a)} := | | | ---> | | |

| v | | v |

\ A / \ A /

The ‘|’ in {a|P(a)} is called the ‘‘such that’’ bar;

we’re doubling it to represent subobjects.

We downcase that into:

a||P(a) |-> a||Q(a)

this morphism - in Set^>-> is not just a mapping of points...

in fact, it’s two morphisms in Set - a|P(a) |-> a|Q(a) and a|->a -

plus the information that the square below commutes:

a|P(a) |---> a|Q(a)

/ /

| |

v v

a |--------> a

2007dnc-sets June 24, 2008 13:31

21

Maps between subobjects: the general case

More generally,

{a||P(a)} -> {b||Q(b)} is:

b:=b(a)

/{a|P(a)}\ /{b|Q(b)}\ a|P(a) |-------> b|Q(b)

| v | | v | / /

| | | ---> | | | | |

| v | | v | v b:=b(a) v

\ A / \ B / a |------------> b

a||P(a) |-> b||Q(b) means ∀a.P(a) ��Q(b(a)).
Note the use of a bit of ‘‘physicist’s notation’’ here -

in the presence of a function f = a|->b the value of b can

be seen as a function of a, and a physicist would write

b=f(a) or b=b(a)... we will prefer b=b(a) to avoid using

new letters, and the dictionary will translate such

expressions (atrocities!) into something mathematically

sound.

We will usually write pseudopoints like a||P(a)

as ‘‘P(a) over a’’ (in parentheses), and we will draw these

things over their ‘‘codomain projections’’:

{a||P(a)} ---> {b||Q(b)} /P(a)\ |---> /Q(b)\

- - \ a / \ b /

cod | | cod || ||

v f v \/ b:=b(a) \/

A -----------> B a |--------> b

In some rare occasions, when space is at premium, we will

write just P(a) instead of ‘‘P(a) over a’’.

The ‘‘codomain projection’’ functor arrows will usually

not be draw.

{a||P(a)} ---> {b||Q(b)} P(a) |-----> Q(b)

f b:=b(a)

A -----------> B a |--------> b

2007dnc-sets June 24, 2008 13:31

22

Quantifiers, categorically

In Set^>-> the functors that quantify over a variable

are adjoints to ‘‘weakening functors’’ that add a dummy

variable to the domain:

{a,b||P(a,b)} |---> {a||∃b.P(a,b)} P(a,b) ===> ∃b.P(a,b)
| | - -

| <-> | | <-> |

v v v v

{a,b||Q(a)} <------| {a||Q(a)} Q(a) <====== Q(a)

| | - -

| <-> | | <-> |

v v v v

{a,b||R(a,b)} |---> {a||∀b.R(a,b)} R(a,b) ===> ∀b.R(a,b)

A×B ----------------> A a,b |------> a

These functors do not operate on the whole of Set^>-> -

they go from one ‘‘fiber’’ of Set^>-> to another.

The best way to formalize this is via /fibrations/;

Set^>-> is a fibration over Set.

A fibration is composed of:

an ‘‘entire category’’ Set^>->

a ‘‘base category’’ Set

a ‘‘projection functor’’ Cod: Set^>-> -> Set

and enough ‘‘cartesian liftings’’. (?!?!?! - next slide)

In our diagrams we will not usually draw the projection functors.

Instead we will just draw the objects of the entire category

over their projections - and we will often omit the part

of their names that can be recovered from the projections.

In the diagram above we wrote just ‘Q(a)’, not ‘a||Q(a)’.

2007dnc-sets June 24, 2008 13:31

23

More notes about archetypes (1)

There are different levels of mathematical truths -

some ideas are "obvious", and I can use them implicitly

or by just mentioning them briefly, and my interlocutor

will accept them; other ideas - for example, theorems

that have been published, but whose proofs are hard -

I can only use with extreme care, and a proof that makes

use of these hard theorems automatically gets marked

with a small red or black flag -

A statement like "the composite (a,b)|->(b,a)|->(a,b)

is the identity" takes very little "mental space", and

is intuitively true, even though in different settings

it may have different proofs, and some of these proofs -

in λ-calculus, for example - may look too technical at

first...

Where do these "intuitively true statements" live?

What languages can we develop to work with them?

Here is a diagram showing some kinds of mathematical

truths. The arrows go from "weaker truths" to "stronger

truths".

True in a particular model

v

True in some particular models

v

True in all models

v

- Provable --

/ | \

/ | \

v v v

Provable by Provable with Provable with

elementary means a proof that a proof that

generalizes I understand

well \ /

v v

Provable in an

insightful way

2007dnc-sets June 24, 2008 13:31

24

More notes about archetypes (2)

(Note: D stands for a DAG - usually finite,

and in most examples having at most five

vertices)

For me, this is the archetype behind the idea of "topos":

Every Set^D is a topos.

However, the resulting concept is much more general than that -

and the "archetypical language" for a topos comes from a very

particular case - Set^D = Set, D = the one-point DAG.

This is the archetype of a "sheaf":

Every Set^O(D)^op has a notion of ‘‘\dbul-sheaf’’.

The resulting notion of ‘‘sheaf’’ - based on Lawvere-Tierney

topologies and modalities - admits several other kinds of

sheaves: ‘‘¬¬-sheaves’’, ‘‘(\aa
��)-sheaves’’, ‘‘(\bb∨)-sheaves’’,

and forcing.

The precise definition of what a topos is

can be expressed in the language of the archetype;

we can use the language of the archetype to express most

(i.e., "enough") of the most important constructions

and theorems; we can use it to help us build dictionaries

between the standard, more precise notations; and proofs done

in the archetype take relatively little mental space, and

generalize easily. Also, the archetypal language for a

topos may collapse (in the syntax!) some things that are

different in some toposes, but it is "non-trivial enough" -

it does not collapse too much.

2007dnc-sets June 24, 2008 13:31

25

More notes about archetypes (3)

What do I expect from an archetype and its language?

"It should be expressive enough"

Most of the basic theory - constructions and theorems -

can be done in the archetypal language, and then lifted

to the general case; the general definition can be

expressed using the archetypal language.

"It collapses enough"

The archetypal syntax identifies (in the "wd[·]" sense)

many constructions that are expected to give the same

results.

"It is non-trivial enough"

Even though the archetypal syntax may identify some

constructions that are distinct in some models

(see the example "x,ab,cd<-|x,a,b,c,d" in monads)

it does not collapse too much.

Also, it can’t take up too much "mental space" -

2007dnc-sets June 24, 2008 13:31

