
02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 1/432

Functional Programming in Lean
by David Thrane Christiansen

Copyright Microsoft Corporation 2023

This is a free book on using Lean 4 as a programming language. All code samples are tested
with Lean 4 release nightly-2023-05-22 .

Release history

May, 2023

The book is now complete! Compared to the April pre-release, many small details have been
improved and minor mistakes have been fixed.

April, 2023

This release adds an interlude on writing proofs with tactics as well as a final chapter that
combines discussion of performance and cost models with proofs of termination and
program equivalence. This is the last release prior to the final release.

March, 2023

This release adds a chapter on programming with dependent types and indexed families.

January, 2023

This release adds a chapter on monad transformers that includes a description of the
imperative features that are available in do -notation.

December, 2022

This release adds a chapter on applicative functors that additionally describes structures
and type classes in more detail. This is accompanied with improvements to the description
of monads. The December 2022 release was delayed until January 2023 due to winter
holidays.
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November, 2022

This release adds a chapter on programming with monads. Additionally, the example of
using JSON in the coercions section has been updated to include the complete code.

October, 2022

This release completes the chapter on type classes. In addition, a short interlude
introducing propositions, proofs, and tactics has been added just before the chapter on
type classes, because a small amount of familiarity with the concepts helps to understand
some of the standard library type classes.

September, 2022

This release adds the first half of a chapter on type classes, which are Lean's mechanism for
overloading operators and an important means of organizing code and structuring libraries.
Additionally, the second chapter has been updated to account for changes in Lean's stream
API.

August, 2022

This third public release adds a second chapter, which describes compiling and running
programs along with Lean's model for side effects.

July, 2022

The second public release completes the first chapter.
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This was the first public release, consisting of an introduction and part of the first chapter.
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Lean is an interactive theorem prover developed at Microsoft Research, based on
dependent type theory. Dependent type theory unites the worlds of programs and proofs;
thus, Lean is also a programming language. Lean takes its dual nature seriously, and it is
designed to be suitable for use as a general-purpose programming language—Lean is even
implemented in itself. This book is about writing programs in Lean.

When viewed as a programming language, Lean is a strict pure functional language with
dependent types. A large part of learning to program with Lean consists of learning how
each of these attributes affects the way programs are written, and how to think like a
functional programmer. Strictness means that function calls in Lean work similarly to the
way they do in most languages: the arguments are fully computed before the function's
body begins running. Purity means that Lean programs cannot have side effects such as
modifying locations in memory, sending emails, or deleting files without the program's type
saying so. Lean is a functional language in the sense that functions are first-class values like
any other and that the execution model is inspired by the evaluation of mathematical
expressions. Dependent types, which are the most unusual feature of Lean, make types into
a first-class part of the language, allowing types to contain programs and programs to
compute types.

This book is intended for programmers who want to learn Lean, but who have not
necessarily used a functional programming language before. Familiarity with functional
languages such as Haskell, OCaml, or F# is not required. On the other hand, this book does
assume knowledge of concepts like loops, functions, and data structures that are common
to most programming languages. While this book is intended to be a good first book on
functional programming, it is not a good first book on programming in general.

Mathematicians who are using Lean as a proof assistant will likely need to write custom
proof automation tools at some point. This book is also for them. As these tools become
more sophisticated, they begin to resemble programs in functional languages, but most
working mathematicians are trained in languages like Python and Mathematica. This book
can help bridge the gap, empowering more mathematicians to write maintainable and
understandable proof automation tools.

This book is intended to be read linearly, from the beginning to the end. Concepts are
introduced one at a time, and later sections assume familiarity with earlier sections.
Sometimes, later chapters will go into depth on a topic that was only briefly addressed
earlier on. Some sections of the book contain exercises. These are worth doing, in order to
cement your understanding of the section. It is also useful to explore Lean as you read the
book, finding creative new ways to use what you have learned.

Getting Lean
Before writing and running programs written in Lean, you'll need to set up Lean on your
own computer. The Lean tooling consists of the following:
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elan  manages the Lean compiler toolchains, similarly to rustup  or ghcup .
lake  builds Lean packages and their dependencies, similarly to cargo , make , or

Gradle.
lean  type checks and compiles individual Lean files as well as providing information

to programmer tools about files that are currently being written. Normally, lean  is
invoked by other tools rather than directly by users.
Plugins for editors, such as Visual Studio Code or Emacs, that communicate with lean
and present its information conveniently.

Please refer to the Lean manual for up-to-date instructions for installing Lean.

Typographical Conventions
Code examples that are provided to Lean as input are formatted like this:

The last line above (beginning with #eval ) is a command that instructs Lean to calculate an
answer. Lean's replies are formatted like this:

Error messages returned by Lean are formatted like this:

Warnings are formatted like this:

Unicode
Idiomatic Lean code makes use of a variety of Unicode characters that are not part of ASCII.
For instance, Greek letters like α  and β  and the arrow →  both occur in the first chapter of
this book. This allows Lean code to more closely resemble ordinary mathematical notation.

def add1 (n : Nat) : Nat := n + 1

#eval add1 7

8

application type mismatch
  add1 "seven"
argument
  "seven"
has type
  String : Type
but is expected to have type
  Nat : Type

declaration uses 'sorry'
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With the default Lean settings, both Visual Studio Code and Emacs allow these characters to
be typed with a backslash ( \ ) followed by a name. For example, to enter α , type \alpha .
To find out how to type a character in Visual Studio Code, point the mouse at it and look at
the tooltip. In Emacs, use C-c C-k  with point on the character in question.
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According to tradition, a programming language should be introduced by compiling and
running a program that displays "Hello, world!"  on the console. This simple program
ensures that the language tooling is installed correctly and that the programmer is able to
run the compiled code.

Since the 1970s, however, programming has changed. Today, compilers are typically
integrated into text editors, and the programming environment offers feedback as the
program is written. Lean is no exception: it implements an extended version of the
Language Server Protocol that allows it to communicate with a text editor and provide
feedback as the user types.

Languages as varied as Python, Haskell, and JavaScript offer a read-eval-print-loop (REPL),
also known as an interactive toplevel or a browser console, in which expressions or
statements can be entered. The language then computes and displays the result of the
user's input. Lean, on the other hand, integrates these features into the interaction with the
editor, providing commands that cause the text editor to display feedback integrated into
the program text itself. This chapter provides a short introduction to interacting with Lean in
an editor, while Hello, World! describes how to use Lean traditionally from the command
line in batch mode.

It is best if you read this book with Lean open in your editor, following along and typing in
each example. Please play with the examples, and see what happens!
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Evaluating Expressions
The most important thing to understand as a programmer learning Lean is how evaluation
works. Evaluation is the process of finding the value of an expression, just as one does in
arithmetic. For instance, the value of 15 - 6 is 9 and the value of 2 × (3 + 1) is 8. To find the
value of the latter expression, 3 + 1 is first replaced by 4, yielding 2 × 4, which itself can be
reduced to 8. Sometimes, mathematical expressions contain variables: the value of x + 1
cannot be computed until we know what the value of x is. In Lean, programs are first and
foremost expressions, and the primary way to think about computation is as evaluating
expressions to find their values.

Most programming languages are imperative, where a program consists of a series of
statements that should be carried out in order to find the program's result. Programs have
access to mutable memory, so the value referred to by a variable can change over time. In
addition to mutable state, programs may have other side effects, such as deleting files,
making outgoing network connections, throwing or catching exceptions, and reading data
from a database. "Side effects" is essentially a catch-all term for describing things that may
happen in a program that don't follow the model of evaluating mathematical expressions.

In Lean, however, programs work the same way as mathematical expressions. Once given a
value, variables cannot be reassigned. Evaluating an expression cannot have side effects. If
two expressions have the same value, then replacing one with the other will not cause the
program to compute a different result. This does not mean that Lean cannot be used to
write Hello, world!  to the console, but performing I/O is not a core part of the experience
of using Lean in the same way. Thus, this chapter focuses on how to evaluate expressions
interactively with Lean, while the next chapter describes how to write, compile, and run the
Hello, world!  program.

To ask Lean to evaluate an expression, write #eval  before it in your editor, which will then
report the result back. Typically, the result is found by putting the cursor or mouse pointer
over #eval . For instance,

yields the value 3 .

Lean obeys the ordinary rules of precedence and associativity for arithmetic operators. That
is,

yields the value 11  rather than 15 .

While both ordinary mathematical notation and the majority of programming languages use
parentheses (e.g. f(x) ) to apply a function to its arguments, Lean simply writes the

#eval 1 + 2

#eval 1 + 2 * 5
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function next to its arguments (e.g. f x ). Function application is one of the most common
operations, so it pays to keep it concise. Rather than writing

to compute "Hello, Lean!" , one would instead write

where the function's two arguments are simply written next to it with spaces.

Just as the order-of-operations rules for arithmetic demand parentheses in the expression
(1 + 2) * 5 , parentheses are also necessary when a function's argument is to be

computed via another function call. For instance, parentheses are required in

because otherwise the second String.append  would be interpreted as an argument to the
first, rather than as a function being passed "oak "  and "tree"  as arguments. The value
of the inner String.append  call must be found first, after which it can be appended to
"great " , yielding the final value "great oak tree" .

Imperative languages often have two kinds of conditional: a conditional statement that
determines which instructions to carry out based on a Boolean value, and a conditional
expression that determines which of two expressions to evaluate based on a Boolean value.
For instance, in C and C++, the conditional statement is written using if  and else , while
the conditional expression is written with a ternary operator ?  and : . In Python, the
conditional statement begins with if , while the conditional expression puts if  in the
middle. Because Lean is an expression-oriented functional language, there are no
conditional statements, only conditional expressions. They are written using if , then , and
else . For instance,

evaluates to

which evaluates to

which finally evaluates to "it is no" .

For the sake of brevity, a series of evaluation steps like this will sometimes be written with
arrows between them:

#eval String.append("Hello, ", "Lean!")

#eval String.append "Hello, " "Lean!"

#eval String.append "great " (String.append "oak " "tree")

String.append "it is " (if 1 > 2 then "yes" else "no")

String.append "it is " (if false then "yes" else "no")

String.append "it is " "no"
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Messages You May Meet

Asking Lean to evaluate a function application that is missing an argument will lead to an
error message. In particular, the example

yields a quite long error message:

This message occurs because Lean functions that are applied to only some of their
arguments return new functions that are waiting for the rest of the arguments. Lean cannot
display functions to users, and thus returns an error when asked to do so.

Exercises

What are the values of the following expressions? Work them out by hand, then enter them
into Lean to check your work.

42 + 19

String.append "A" (String.append "B" "C")

String.append (String.append "A" "B") "C"

if 3 == 3 then 5 else 7

if 3 == 4 then "equal" else "not equal"

String.append "it is " (if 1 > 2 then "yes" else "no")
===>
String.append "it is " (if false then "yes" else "no")
===>
String.append "it is " "no"
===>
"it is no"

#eval String.append "it is "

expression
  String.append "it is "
has type
  String → String
but instance
  Lean.MetaEval (String → String)
failed to be synthesized, this instance instructs Lean on how to display the 
resulting value, recall that any type implementing the `Repr` class also 
implements the `Lean.MetaEval` class
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Types
Types classify programs based on the values that they can compute. Types serve a number
of roles in a program:

1. They allow the compiler to make decisions about the in-memory representation of a
value.

2. They help programmers to communicate their intent to others, serving as a lightweight
specification for the inputs and outputs of a function that the compiler can ensure the
program adheres to.

3. They prevent various potential mistakes, such as adding a number to a string, and thus
reduce the number of tests that are necessary for a program.

4. They help the Lean compiler automate the production of auxiliary code that can save
boilerplate.

Lean's type system is unusually expressive. Types can encode strong specifications like "this
sorting function returns a permutation of its input" and flexible specifications like "this
function has different return types, depending on the value of its argument". The type
system can even be used as a full-blown logic for proving mathematical theorems. This
cutting-edge expressive power doesn't obviate the need for simpler types, however, and
understanding these simpler types is a prerequisite for using the more advanced features.

Every program in Lean must have a type. In particular, every expression must have a type
before it can be evaluated. In the examples so far, Lean has been able to discover a type on
its own, but it is sometimes necessary to provide one. This is done using the colon operator:

Here, Nat  is the type of natural numbers, which are arbitrary-precision unsigned integers. In
Lean, Nat  is the default type for non-negative integer literals. This default type is not always
the best choice. In C, unsigned integers underflow to the largest representable numbers
when subtraction would otherwise yield a result less than zero. Nat , however, can
represent arbitrarily-large unsigned numbers, so there is no largest number to underflow
to. Thus, subtraction on Nat  returns 0  when the answer would have otherwise been
negative. For instance,

evaluates to 0  rather than -1 . To use a type that can represent the negative integers,
provide it directly:

#eval (1 + 2 : Nat)

#eval 1 - 2
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With this type, the result is -1 , as expected.

To check the type of an expression without evaluating it, use #check  instead of #eval . For
instance:

reports 1 - 2 : Int  without actually performing the subtraction.

When a program can't be given a type, an error is returned from both #check  and #eval .
For instance:

outputs

because the second argument to String.append  is expected to be a string, but a list of
strings was provided instead.

#eval (1 - 2 : Int)

#check (1 - 2 : Int)

#check String.append "hello" [" ", "world"]

application type mismatch
  String.append "hello" [" ", "world"]
argument
  [" ", "world"]
has type
  List String : Type
but is expected to have type
  String : Type
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Functions and Definitions
In Lean, definitions are introduced using the def  keyword. For instance, to define the name
hello  to refer to the string "Hello" , write:

In Lean, new names are defined using the colon-equal operator :=  rather than = . This is
because =  is used to describe equalities between existing expressions, and using two
different operators helps prevent confusion.

In the definition of hello , the expression "Hello"  is simple enough that Lean is able to
determine the definition's type automatically. However, most definitions are not so simple,
so it will usually be necessary to add a type. This is done using a colon after the name being
defined.

Now that the names have been defined, they can be used, so

outputs

In Lean, defined names may only be used after their definitions.

In many languages, definitions of functions use a different syntax than definitions of other
values. For instance, Python function definitions begin with the def  keyword, while other
definitions are defined with an equals sign. In Lean, functions are defined using the same
def  keyword as other values. Nonetheless, definitions such as hello  introduce names that

refer directly to their values, rather than to zero-argument functions that return equivalent
results each time they are called.

Defining Functions

There are a variety of ways to define functions in Lean. The simplest is to place the
function's arguments before the definition's type, separated by spaces. For instance, a
function that adds one to its argument can be written:

def hello := "Hello"

def lean : String := "Lean"

#eval String.append hello (String.append " " lean)

"Hello Lean"

def add1 (n : Nat) : Nat := n + 1
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Testing this function with #eval  gives 8 , as expected:

Just as functions are applied to multiple arguments by writing spaces between each
argument, functions that accept multiple arguments are defined with spaces between the
arguments' names and types. The function maximum , whose result is equal to the greatest of
its two arguments, takes two Nat  arguments n  and k  and returns a Nat .

When a defined function like maximum  has been provided with its arguments, the result is
determined by first replacing the argument names with the provided values in the body,
and then evaluating the resulting body. For example:

Expressions that evaluate to natural numbers, integers, and strings have types that say this
( Nat , Int , and String , respectively). This is also true of functions. A function that accepts
a Nat  and returns a Bool  has type Nat → Bool , and a function that accepts two Nat s and
returns a Nat  has type Nat → Nat → Nat .

As a special case, Lean returns a function's signature when its name is used directly with
#check . Entering #check add1  yields add1 (n : Nat) : Nat . However, Lean can be

"tricked" into showing the function's type by writing the function's name in parentheses,
which causes the function to be treated as an ordinary expression, so #check (add1)  yields
add1 : Nat → Nat  and #check (maximum)  yields maximum : Nat → Nat → Nat . This arrow

can also be written with an ASCII alternative arrow -> , so the preceding function types can
be written Nat -> Nat  and Nat -> Nat -> Nat , respectively.

Behind the scenes, all functions actually expect precisely one argument. Functions like
maximum  that seem to take more than one argument are in fact functions that take one

argument and then return a new function. This new function takes the next argument, and
the process continues until no more arguments are expected. This can be seen by providing
one argument to a multiple-argument function: #check maximum 3  yields maximum 3 : Nat 
→ Nat  and #check String.append "Hello "  yields String.append "Hello " : String → 
String . Using a function that returns a function to implement multiple-argument functions

#eval add1 7

def maximum (n : Nat) (k : Nat) : Nat :=
  if n < k then
    k
  else n

maximum (5 + 8) (2 * 7)
===>
maximum 13 14
===>
if 13 < 14 then 14 else 13
===>
14
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is called currying after the mathematician Haskell Curry. Function arrows associate to the
right, which means that Nat → Nat → Nat  should be parenthesized Nat → (Nat → Nat) .

Exercises

Define the function joinStringsWith  with type String -> String -> String -> 
String  that creates a new string by placing its first argument between its second and
third arguments. joinStringsWith ", " "one" "and another"  should evaluate to
"one, and another" .

What is the type of joinStringsWith ": " ? Check your answer with Lean.
Define a function volume  with type Nat → Nat → Nat → Nat  that computes the
volume of a rectangular prism with the given height, width, and depth.

Defining Types

Most typed programming languages have some means of defining aliases for types, such as
C's typedef . In Lean, however, types are a first-class part of the language - they are
expressions like any other. This means that definitions can refer to types just as well as they
can refer to other values.

For instance, if String  is too much to type, a shorter abbreviation Str  can be defined:

It is then possible to use Str  as a definition's type instead of String :

The reason this works is that types follow the same rules as the rest of Lean. Types are
expressions, and in an expression, a defined name can be replaced with its definition.
Because Str  has been defined to mean String , the definition of aStr  makes sense.

Messages You May Meet

Experimenting with using definitions for types is made more complicated by the way that
Lean supports overloaded integer literals. If Nat  is too short, a longer name
NaturalNumber  can be defined:

def Str : Type := String

def aStr : Str := "This is a string."

def NaturalNumber : Type := Nat
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However, using NaturalNumber  as a definition's type instead of Nat  does not have the
expected effect. In particular, the definition:

results in the following error:

This error occurs because Lean allows number literals to be overloaded. When it makes
sense to do so, natural number literals can be used for new types, just as if those types
were built in to the system. This is part of Lean's mission of making it convenient to
represent mathematics, and different branches of mathematics use number notation for
very different purposes. The specific feature that allows this overloading does not replace all
defined names with their definitions before looking for overloading, which is what leads to
the error message above.

One way to work around this limitation is by providing the type Nat  on the right-hand side
of the definition, causing Nat 's overloading rules to be used for 38 :

The definition is still type-correct because NaturalNumber  is the same type as Nat —by
definition!

Another solution is to define an overloading for NaturalNumber  that works equivalently to
the one for Nat . This requires more advanced features of Lean, however.

Finally, defining the new name for Nat  using abbrev  instead of def  allows overloading
resolution to replace the defined name with its definition. Definitions written using abbrev
are always unfolded. For instance,

and

are accepted without issue.

Behind the scenes, some definitions are internally marked as being unfoldable during
overload resolution, while others are not. Definitions that are to be unfolded are called
reducible. Control over reducibility is essential to allow Lean to scale: fully unfolding all
definitions can result in very large types that are slow for a machine to process and difficult
for users to understand. Definitions produced with abbrev  are marked as reducible.

def thirtyEight : NaturalNumber := 38

failed to synthesize instance
  OfNat NaturalNumber 38

def thirtyEight : NaturalNumber := (38 : Nat)

abbrev N : Type := Nat

def thirtyNine : N := 39
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Structures
The first step in writing a program is usually to identify the problem domain's concepts, and
then find suitable representations for them in code. Sometimes, a domain concept is a
collection of other, simpler, concepts. In that case, it can be convenient to group these
simpler components together into a single "package", which can then be given a meaningful
name. In Lean, this is done using structures, which are analogous to struct s in C or Rust
and record s in C#.

Defining a structure introduces a completely new type to Lean that can't be reduced to any
other type. This is useful because multiple structures might represent different concepts
that nonetheless contain the same data. For instance, a point might be represented using
either Cartesian or polar coordinates, each being a pair of floating-point numbers. Defining
separate structures prevents API clients from confusing one for another.

Lean's floating-point number type is called Float , and floating-point numbers are written in
the usual notation.

When floating point numbers are written with the decimal point, Lean will infer the type
Float . If they are written without it, then a type annotation may be necessary.

A Cartesian point is a structure with two Float  fields, called x  and y . This is declared
using the structure  keyword.

#check 1.2

1.2 : Float

#check -454.2123215

-454.2123215 : Float

#check 0.0

0.0 : Float

#check 0

0 : Nat

#check (0 : Float)

0 : Float
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After this declaration, Point  is a new structure type. The final line, which says deriving 
Repr , asks Lean to generate code to display values of type Point . This code is used by
#eval  to render the result of evaluation for consumption by programmers, analogous to

the repr  function in Python. It is also possible to override the compiler's generated display
code.

The typical way to create a value of a structure type is to provide values for all of its fields
inside of curly braces. The origin of a Cartesian plane is where x  and y  are both zero:

If the deriving Repr  line in Point 's definition were omitted, then attempting #eval 
origin  would yield an error similar to that which occurs when omitting a function's
argument:

That message is saying that the evaluation machinery doesn't know how to communicate
the result of evaluation back to the user.

Happily, with deriving Repr , the result of #eval origin  looks very much like the
definition of origin .

Because structures exist to "bundle up" a collection of data, naming it and treating it as a
single unit, it is also important to be able to extract the individual fields of a structure. This is
done using dot notation, as in C, Python, or Rust.

structure Point where
  x : Float
  y : Float
deriving Repr

def origin : Point := { x := 0.0, y := 0.0 }

expression
  origin
has type
  Point
but instance
  Lean.MetaEval Point
failed to be synthesized, this instance instructs Lean on how to display the 
resulting value, recall that any type implementing the `Repr` class also 
implements the `Lean.MetaEval` class

{ x := 0.000000, y := 0.000000 }

#eval origin.x

0.000000

#eval origin.y
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This can be used to define functions that take structures as arguments. For instance,
addition of points is performed by adding the underlying coordinate values. It should be the
case that #eval addPoints { x := 1.5, y := 32 } { x := -8, y := 0.2 }  yields

The function itself takes two Points  as arguments, called p1  and p2 . The resulting point is
based on the x  and y  fields of both p1  and p2 :

Similarly, the distance between two points, which is the square root of the sum of the
squares of the differences in their x  and y  components, can be written:

For example, the distance between (1, 2) and (5, -1) is 5:

Multiple structures may have fields with the same names. For instance, a three-dimensional
point datatype may share the fields x  and y , and be instantiated with the same field
names:

This means that the structure's expected type must be known in order to use the curly-
brace syntax. If the type is not known, Lean will not be able to instantiate the structure. For
instance,

leads to the error

0.000000

{ x := -6.500000, y := 32.200000 }

def addPoints (p1 : Point) (p2 : Point) : Point :=
  { x := p1.x + p2.x, y := p1.y + p2.y }

def distance (p1 : Point) (p2 : Point) : Float :=
  Float.sqrt (((p2.x - p1.x) ^ 2.0) + ((p2.y - p1.y) ^ 2.0))

#eval distance { x := 1.0, y := 2.0 } { x := 5.0, y := -1.0 }

5.000000

structure Point3D where
  x : Float
  y : Float
  z : Float
deriving Repr

def origin3D : Point3D := { x := 0.0, y := 0.0, z := 0.0 }

#check { x := 0.0, y := 0.0 }

invalid {...} notation, expected type is not known
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As usual, the situation can be remedied by providing a type annotation.

To make programs more concise, Lean also allows the structure type annotation inside the
curly braces.

Updating Structures

Imagine a function zeroX  that replaces the x  field of a Point  with 0.0 . In most
programming language communities, this sentence would mean that the memory location
pointed to by x  was to be overwritten with a new value. However, Lean does not have
mutable state. In functional programming communities, what is almost always meant by
this kind of statement is that a fresh Point  is allocated with the x  field pointing to the new
value, and all other fields pointing to the original values from the input. One way to write
zeroX  is to follow this description literally, filling out the new value for x  and manually

transferring y :

This style of programming has drawbacks, however. First off, if a new field is added to a
structure, then every site that updates any field at all must be updated, causing
maintenance difficulties. Secondly, if the structure contains multiple fields with the same
type, then there is a real risk of copy-paste coding leading to field contents being duplicated
or switched. Finally, the program becomes long and bureaucratic.

Lean provides a convenient syntax for replacing some fields in a structure while leaving the
others alone. This is done by using the with  keyword in a structure initialization. The
source of unchanged fields occurs before the with , and the new fields occur after. For
instance, zeroX  can be written with only the new x  value:

Remember that this structure update syntax does not modify existing values—it creates
new values that share some fields with old values. For instance, given the point
fourAndThree :

#check ({ x := 0.0, y := 0.0 } : Point)

{ x := 0.0, y := 0.0 } : Point

#check { x := 0.0, y := 0.0 : Point}

{ x := 0.0, y := 0.0 } : Point

def zeroX (p : Point) : Point :=
  { x := 0, y := p.y }

def zeroX (p : Point) : Point :=
  { p with x := 0 }
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evaluating it, then evaluating an update of it using zeroX , then evaluating it again yields the
original value:

One consequence of the fact that structure updates do not modify the original structure is
that it becomes easier to reason about cases where the new value is computed from the old
one. All references to the old structure continue to refer to the same field values in all of the
new values provided.

Behind the Scenes

Every structure has a constructor. Here, the term "constructor" may be a source of
confusion. Unlike constructors in languages such as Java or Python, constructors in Lean are
not arbitrary code to be run when a datatype is initialized. Instead, constructors simply
gather the data to be stored in the newly-allocated data structure. It is not possible to
provide a custom constructor that pre-processes data or rejects invalid arguments. This is
really a case of the word "constructor" having different, but related, meanings in the two
contexts.

By default, the constructor for a structure named S  is named S.mk . Here, S  is a
namespace qualifier, and mk  is the name of the constructor itself. Instead of using curly-
brace initialization syntax, the constructor can also be applied directly.

However, this is not generally considered to be good Lean style, and Lean even returns its
feedback using the standard structure initializer syntax.

def fourAndThree : Point :=
  { x := 4.3, y := 3.4 }

#eval fourAndThree

{ x := 4.300000, y := 3.400000 }

#eval zeroX fourAndThree

{ x := 0.000000, y := 3.400000 }

#eval fourAndThree

{ x := 4.300000, y := 3.400000 }

#check Point.mk 1.5 2.8
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Constructors have function types, which means they can be used anywhere that a function
is expected. For instance, Point.mk  is a function that accepts two Float s (respectively x
and y ) and returns a new Point .

To override a structure's constructor name, write it with two colons at the beginning. For
instance, to use Point.point  instead of Point.mk , write:

In addition to the constructor, an accessor function is defined for each field of a structure.
These have the same name as the field, in the structure's namespace. For Point , accessor
functions Point.x  and Point.y  are generated.

In fact, just as the curly-braced structure construction syntax is converted to a call to the
structure's constructor behind the scenes, the syntax p1.x  in the prior definition of
addPoints  is converted into a call to the Point.x  accessor. That is, #eval origin.x  and
#eval Point.x origin  both yield

Accessor dot notation is usable with more than just structure fields. It can also be used for
functions that take any number of arguments. More generally, accessor notation has the
form TARGET.f ARG1 ARG2 ... . If TARGET  has type T , the function named T.f  is called.
TARGET  becomes its leftmost argument of type T , which is often but not always the first

one, and ARG1 ARG2 ...  are provided in order as the remaining arguments. For instance,
String.append  can be invoked from a string with accessor notation, even though String  is

not a structure with an append  field.

{ x := 1.5, y := 2.8 } : Point

#check (Point.mk)

Point.mk : Float → Float → Point

structure Point where
  point ::
  x : Float
  y : Float
deriving Repr

#check (Point.x)

Point.x : Point → Float

#check (Point.y)

Point.y : Point → Float

0.000000
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In that example, TARGET  represents "one string"  and ARG1  represents " and another" .

The function Point.modifyBoth  (that is, modifyBoth  defined in the Point  namespace)
applies a function to both fields in a Point :

Even though the Point  argument comes after the function argument, it can be used with
dot notation as well:

In this case, TARGET  represents fourAndThree , while ARG1  is Float.floor . This is because
the target of the accessor notation is used as the first argument in which the type matches,
not necessarily the first argument.

Exercises

Define a structure named RectangularPrism  that contains the height, width, and
depth of a rectangular prism, each as a Float .
Define a function named volume : RectangularPrism → Float  that computes the
volume of a rectangular prism.
Define a structure named Segment  that represents a line segment by its endpoints,
and define a function length : Segment → Float  that computes the length of a line
segment. Segment  should have at most two fields.
Which names are introduced by the declaration of RectangularPrism ?
Which names are introduced by the following declarations of Hamster  and Book ?
What are their types?

#eval "one string".append " and another"

"one string and another"

def Point.modifyBoth (f : Float → Float) (p : Point) : Point :=
  { x:= f p.x, y := f p.y }

#eval fourAndThree.modifyBoth Float.floor

{ x := 4.000000, y := 3.000000 }

structure Hamster where
  name : String
  fluffy : Bool
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structure Book where
  makeBook ::
  title : String
  author : String
  price : Float
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Datatypes and Patterns
Structures enable multiple independent pieces of data to be combined into a coherent
whole that is represented by a brand new type. Types such as structures that group
together a collection of values are called product types. Many domain concepts, however,
can't be naturally represented as structures. For instance, an application might need to
track user permissions, where some users are document owners, some may edit
documents, and others may only read them. A calculator has a number of binary operators,
such as addition, subtraction, and multiplication. Structures do not provide an easy way to
encode multiple choices.

Similarly, while a structure is an excellent way to keep track of a fixed set of fields, many
applications require data that may contain an arbitrary number of elements. Most classic
data structures, such as trees and lists, have a recursive structure, where the tail of a list is
itself a list, or where the left and right branches of a binary tree are themselves binary trees.
In the aforementioned calculator, the structure of expressions themselves is recursive. The
summands in an addition expression may themselves be multiplication expressions, for
instance.

Datatypes that allow choices are called sum types and datatypes that can include instances
of themselves are called recursive datatypes. Recursive sum types are called inductive
datatypes, because mathematical induction may be used to prove statements about them.
When programming, inductive datatypes are consumed through pattern matching and
recursive functions.

Many of the built-in types are actually inductive datatypes in the standard library. For
instance, Bool  is an inductive datatype:

This definition has two main parts. The first line provides the name of the new type ( Bool ),
while the remaining lines each describe a constructor. As with constructors of structures,
constructors of inductive datatypes are mere inert receivers of and containers for other
data, rather than places to insert arbitrary initialization and validation code. Unlike
structures, inductive datatypes may have multiple constructors. Here, there are two
constructors, true  and false , and neither takes any arguments. Just as a structure
declaration places its names in a namespace named after the declared type, an inductive
datatype places the names of its constructors in a namespace. In the Lean standard library,
true  and false  are re-exported from this namespace so that they can be written alone,

rather than as Bool.true  and Bool.false , respectively.

From a data modeling perspective, inductive datatypes are used in many of the same
contexts where a sealed abstract class might be used in other languages. In languages like

inductive Bool where
  | false : Bool
  | true : Bool
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C# or Java, one might write a similar definition of Bool :

However, the specifics of these representations are fairly different. In particular, each non-
abstract class creates both a new type and new ways of allocating data. In the object-
oriented example, True  and False  are both types that are more specific than Bool , while
the Lean definition introduces only the new type Bool .

The type Nat  of non-negative integers is an inductive datatype:

Here, zero  represents 0, while succ  represents the successor of some other number. The
Nat  mentioned in succ 's declaration is the very type Nat  that is in the process of being

defined. Successor means "one greater than", so the successor of five is six and the
successor of 32,185 is 32,186. Using this definition, 4  is represented as Nat.succ 
(Nat.succ (Nat.succ (Nat.succ Nat.zero))) . This definition is almost like the definition of
Bool  with slightly different names. The only real difference is that succ  is followed by (n : 
Nat) , which specifies that the constructor succ  takes an argument of type Nat  which
happens to be named n . The names zero  and succ  are in a namespace named after their
type, so they must be referred to as Nat.zero  and Nat.succ , respectively.

Argument names, such as n , may occur in Lean's error messages and in feedback provided
when writing mathematical proofs. Lean also has an optional syntax for providing
arguments by name. Generally, however, the choice of argument name is less important
than the choice of a structure field name, as it does not form as large a part of the API.

In C# or Java, Nat  could be defined as follows:

Just as in the Bool  example above, this defines more types than the Lean equivalent.
Additionally, this example highlights how Lean datatype constructors are much more like
subclasses of an abstract class than they are like constructors in C# or Java, as the
constructor shown here contains initialization code to be executed.

abstract class Bool {}
class True : Bool {}
class False : Bool {}

inductive Nat where
  | zero : Nat
  | succ (n : Nat) : Nat

abstract class Nat {}
class Zero : Nat {}
class Succ : Nat {
  public Nat n;
  public Succ(Nat pred) {
    n = pred;
  }
}
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Sum types are also similar to using a string tag to encode discriminated unions in
TypeScript. In TypeScript, Nat  could be defined as follows:

Just like C# and Java, this encoding ends up with more types than in Lean, because Zero
and Succ  are each a type on their own. It also illustrates that Lean constructors correspond
to objects in JavaScript or TypeScript that include a tag that identifies the contents.

Pattern Matching

In many languages, these kinds of data are consumed by first using an instance-of operator
to check which subclass has been received and then reading the values of the fields that are
available in the given subclass. The instance-of check determines which code to run,
ensuring that the data needed by this code is available, while the fields themselves provide
the data. In Lean, both of these purposes are simultaneously served by pattern matching.

An example of a function that uses pattern matching is isZero , which is a function that
returns true  when its argument is Nat.zero , or false otherwise.

The match  expression is provided the function's argument n  for destructuring. If n  was
constructed by Nat.zero , then the first branch of the pattern match is taken, and the result
is true . If n  was constructed by Nat.succ , then the second branch is taken, and the result
is false .

Step-by-step, evaluation of isZero Nat.zero  proceeds as follows:

interface Zero {
    tag: "zero";
}

interface Succ {
    tag: "succ";
    predecessor: Nat;
}

type Nat = Zero | Succ;

def isZero (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => false
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Evaluation of isZero 5  proceeds similarly:

The k  in the second branch of the pattern in isZero  is not decorative. It makes the Nat
that is the argument to succ  visible, with the provided name. That smaller number can
then be used to compute the final result of the expression.

Just as the successor of some number  is one greater than  (that is, ), the
predecessor of a number is one less than it. If pred  is a function that finds the predecessor
of a Nat , then it should be the case that the following examples find the expected result:

Because Nat  cannot represent negative numbers, 0  is a bit of a conundrum. Usually, when
working with Nat , operators that would ordinarily produce a negative number are
redefined to produce 0  itself:

To find the predecessor of a Nat , the first step is to check which constructor was used to
create it. If it was Nat.zero , then the result is Nat.zero . If it was Nat.succ , then the name
k  is used to refer to the Nat  underneath it. And this Nat  is the desired predecessor, so the

result of the Nat.succ  branch is k .

isZero Nat.zero
===>
match Nat.zero with
| Nat.zero => true
| Nat.succ k => false
===>
true

isZero 5
===>
isZero (Nat.succ (Nat.succ (Nat.succ (Nat.succ (Nat.succ Nat.zero)))))
===>
match Nat.succ (Nat.succ (Nat.succ (Nat.succ (Nat.succ Nat.zero)))) with
| Nat.zero => true
| Nat.succ k => false
===>
false

n n n + 1

#eval pred 5

4

#eval pred 839

838

#eval pred 0

0
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Applying this function to 5  yields the following steps:

Pattern matching can be used with structures as well as with sum types. For instance, a
function that extracts the third dimension from a Point3D  can be written as follows:

In this case, it would have been much simpler to just use the z  accessor, but structure
patterns are occasionally the simplest way to write a function.

Recursive Functions

Definitions that refer to the name being defined are called recursive definitions. Inductive
datatypes are allowed to be recursive; indeed, Nat  is an example of such a datatype
because succ  demands another Nat . Recursive datatypes can represent arbitrarily large
data, limited only by technical factors like available memory. Just as it would be impossible
to write down one constructor for each natural number in the datatype definition, it is also
impossible to write down a pattern match case for each possibility.

Recursive datatypes are nicely complemented by recursive functions. A simple recursive
function over Nat  checks whether its argument is even. In this case, zero  is even. Non-
recursive branches of the code like this one are called base cases. The successor of an odd
number is even, and the successor of an even number is odd. This means that a number
built with succ  is even if and only if its argument is not even.

def pred (n : Nat) : Nat :=
  match n with
  | Nat.zero => Nat.zero
  | Nat.succ k => k

pred 5
===>
pred (Nat.succ 4)
===>
match Nat.succ 4 with
| Nat.zero => Nat.zero
| Nat.succ k => k
===>
4

def depth (p : Point3D) : Float :=
  match p with
  | { x:= h, y := w, z := d } => d

def even (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (even k)
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This pattern of thought is typical for writing recursive functions on Nat . First, identify what
to do for zero . Then, determine how to transform a result for an arbitrary Nat  into a result
for its successor, and apply this transformation to the result of the recursive call. This
pattern is called structural recursion.

Unlike many languages, Lean ensures by default that every recursive function will eventually
reach a base case. From a programming perspective, this rules out accidental infinite loops.
But this feature is especially important when proving theorems, where infinite loops cause
major difficulties. A consequence of this is that Lean will not accept a version of even  that
attempts to invoke itself recursively on the original number:

The important part of the error message is that Lean could not determine that the recursive
function always reaches a base case (because it doesn't).

Even though addition takes two arguments, only one of them needs to be inspected. To add
zero to a number , just return . To add the successor of  to , take the successor of the
result of adding  to .

In the definition of plus , the name k'  is chosen to indicate that it is connected to, but not
identical with, the argument k . For instance, walking through the evaluation of plus 3 2
yields the following steps:

def evenLoops (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (evenLoops n)

fail to show termination for
  evenLoops
with errors
structural recursion cannot be used

well-founded recursion cannot be used, 'evenLoops' does not take any (non-fixed) 
arguments

n n k n

k n

def plus (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => n
  | Nat.succ k' => Nat.succ (plus n k')
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One way to think about addition is that  applies Nat.succ   times to . Similarly,
multiplication  adds  to itself  times and subtraction  takes 's predecessor 
times.

Not every function can be easily written using structural recursion. The understanding of
addition as iterated Nat.succ , multiplication as iterated addition, and subtraction as
iterated predecessor suggests an implementation of division as iterated subtraction. In this
case, if the numerator is less than the divisor, the result is zero. Otherwise, the result is the
successor of dividing the numerator minus the divisor by the divisor.

As long as the second argument is not 0 , this program terminates, as it always makes
progress towards the base case. However, it is not structurally recursive, because it doesn't
follow the pattern of finding a result for zero and transforming a result for a smaller Nat

plus 3 2
===>
plus 3 (Nat.succ (Nat.succ Nat.zero))
===>
match Nat.succ (Nat.succ Nat.zero) with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k')
===>
Nat.succ (plus 3 (Nat.succ Nat.zero))
===>
Nat.succ (match Nat.succ Nat.zero with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k'))
===>
Nat.succ (Nat.succ (plus 3 Nat.zero))
===>
Nat.succ (Nat.succ (match Nat.zero with
| Nat.zero => 3
| Nat.succ k' => Nat.succ (plus 3 k')))
===>
Nat.succ (Nat.succ 3)
===>
5

n + k k n

n × k n k n − k n k

def times (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => Nat.zero
  | Nat.succ k' => plus n (times n k')

def minus (n : Nat) (k : Nat) : Nat :=
  match k with
  | Nat.zero => n
  | Nat.succ k' => pred (minus n k')

def div (n : Nat) (k : Nat) : Nat :=
  if n < k then
    0
  else Nat.succ (div (n - k) k)
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into a result for its successor. In particular, the recursive invocation of the function is
applied to the result of another function call, rather than to an input constructor's
argument. Thus, Lean rejects it with the following message:

This message means that div  requires a manual proof of termination. This topic is
explored in the final chapter.

fail to show termination for
  div
with errors
argument #1 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k

argument #2 was not used for structural recursion
  failed to eliminate recursive application
    div (n - k) k

structural recursion cannot be used

failed to prove termination, use `termination_by` to specify a well-founded 
relation
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Polymorphism
Just as in most languages, types in Lean can take arguments. For instance, the type List 
Nat  describes lists of natural numbers, List String  describes lists of strings, and List 
(List Point)  describes lists of lists of points. This is very similar to List<Nat> ,
List<String> , or List<List<Point>>  in a language like C# or Java. Just as Lean uses a

space to pass an argument to a function, it uses a space to pass an argument to a type.

In functional programming, the term polymorphism typically refers to datatypes and
definitions that take types as arguments. This is different from the object-oriented
programming community, where the term typically refers to subclasses that may override
some behavior of their superclass. In this book, "polymorphism" always refers to the first
sense of the word. These type arguments can be used in the datatype or definition, which
allows the same datatype or definition to be used with any type that results from replacing
the arguments' names with some other types.

The Point  structure requires that both the x  and y  fields are Float s. There is, however,
nothing about points that require a specific representation for each coordinate. A
polymorphic version of Point , called PPoint , can take a type as an argument, and then
use that type for both fields:

Just as a function definition's arguments are written immediately after the name being
defined, a structure's arguments are written immediately after the structure's name. It is
customary to use Greek letters to name type arguments in Lean when no more specific
name suggests itself. Type  is a type that describes other types, so Nat , List String , and
PPoint Int  all have type Type .

Just like List , PPoint  can be used by providing a specific type as its argument:

In this example, both fields are expected to be Nat s. Just as a function is called by replacing
its argument variables with its argument values, providing PPoint  with the type Nat  as an
argument yields a structure in which the fields x  and y  have the type Nat , because the
argument name α  has been replaced by the argument type Nat . Types are ordinary
expressions in Lean, so passing arguments to polymorphic types (like PPoint ) doesn't
require any special syntax.

structure PPoint (α : Type) where
  x : α
  y : α
deriving Repr

def natOrigin : PPoint Nat :=
  { x := Nat.zero, y := Nat.zero }
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Definitions may also take types as arguments, which makes them polymorphic. The function
replaceX  replaces the x  field of a PPoint  with a new value. In order to allow replaceX  to

work with any polymorphic point, it must be polymorphic itself. This is achieved by having
its first argument be the type of the point's fields, with later arguments referring back to the
first argument's name.

In other words, when the types of the arguments point  and newX  mention α , they are
referring to whichever type was provided as the first argument. This is similar to the way that
function argument names refer to the values that were provided when they occur in the
function's body.

This can be seen by asking Lean to check the type of replaceX , and then asking it to check
the type of replaceX Nat .

This function type includes the name of the first argument, and later arguments in the type
refer back to this name. Just as the value of a function application is found by replacing the
argument name with the provided argument value in the function's body, the type of a
function application is found by replacing the argument's name with the provided value in
the function's return type. Providing the first argument, Nat , causes all occurrences of α  in
the remainder of the type to be replaced with Nat :

Because the remaining arguments are not explicitly named, no further substitution occurs
as more arguments are provided:

The fact that the type of the whole function application expression was determined by
passing a type as an argument has no bearing on the ability to evaluate it.

def replaceX (α : Type) (point : PPoint α) (newX : α) : PPoint α :=
  { point with x := newX }

#check (replaceX)

replaceX : (α : Type) → PPoint α → α → PPoint α

#check replaceX Nat

replaceX Nat : PPoint Nat → Nat → PPoint Nat

#check replaceX Nat natOrigin

replaceX Nat natOrigin : Nat → PPoint Nat

#check replaceX Nat natOrigin 5

replaceX Nat natOrigin 5 : PPoint Nat



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 36/432

Polymorphic functions work by taking a named type argument and having later types refer
to the argument's name. However, there's nothing special about type arguments that allows
them to be named. Given a datatype that represents positive or negative signs:

it is possible to write a function whose argument is a sign. If the argument is positive, the
function returns a Nat , while if it's negative, it returns an Int :

Because types are first class and can be computed using the ordinary rules of the Lean
language, they can be computed by pattern-matching against a datatype. When Lean is
checking this function, it uses the fact that the match -expression in the function's body
corresponds to the match -expression in the type to make Nat  be the expected type for the
pos  case and to make Int  be the expected type for the neg  case.

Applying posOrNegThree  to Sign.pos  results in the argument name s  in both the body of
the function and its return type being replaced by Sign.pos . Evaluation can occur both in
the expression and its type:

Linked Lists

Lean's standard library includes a canonical linked list datatype, called List , and special
syntax that makes it more convenient to use. Lists are written in square brackets. For

#eval replaceX Nat natOrigin 5

{ x := 5, y := 0 }

inductive Sign where
  | pos
  | neg

def posOrNegThree (s : Sign) : match s with | Sign.pos => Nat | Sign.neg => Int 
:=
  match s with
  | Sign.pos => (3 : Nat)
  | Sign.neg => (-3 : Int)

(posOrNegThree Sign.pos : match Sign.pos with | Sign.pos => Nat | Sign.neg => 
Int)
===>
((match Sign.pos with
  | Sign.pos => (3 : Nat)
  | Sign.neg => (-3 : Int)) :
 match Sign.pos with | Sign.pos => Nat | Sign.neg => Int)
===>
((3 : Nat) : Nat)
===>
3
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instance, a list that contains the prime numbers less than 10 can be written:

Behind the scenes, List  is an inductive datatype, defined like this:

The actual definition in the standard library is slightly different, because it uses features that
have not yet been presented, but it is substantially similar. This definition says that List
takes a single type as its argument, just as PPoint  did. This type is the type of the entries
stored in the list. According to the constructors, a List α  can be built with either nil  or
cons . The constructor nil  represents empty lists and the constructor cons  is used for

non-empty lists. The first argument to cons  is the head of the list, and the second
argument is its tail. A list that contains  entries contains  cons  constructors, the last of
which has nil  as its tail.

The primesUnder10  example can be written more explicitly by using List 's constructors
directly:

These two definitions are completely equivalent, but primesUnder10  is much easier to read
than explicitPrimesUnder10 .

Functions that consume List s can be defined in much the same way as functions that
consume Nat s. Indeed, one way to think of a linked list is as a Nat  that has an extra data
field dangling off each succ  constructor. From this point of view, computing the length of a
list is the process of replacing each cons  with a succ  and the final nil  with a zero . Just
as replaceX  took the type of the fields of the point as an argument, length  takes the type
of the list's entries. For example, if the list contains strings, then the first argument is
String : length String ["Sourdough", "bread"] . It should compute like this:

def primesUnder10 : List Nat := [2, 3, 5, 7]

inductive List (α : Type) where
  | nil : List α
  | cons : α → List α → List α

n n

def explicitPrimesUnder10 : List Nat :=
  List.cons 2 (List.cons 3 (List.cons 5 (List.cons 7 List.nil)))

length String ["Sourdough", "bread"]
===>
length String (List.cons "Sourdough" (List.cons "bread" List.nil))
===>
Nat.succ (length String (List.cons "bread" List.nil))
===>
Nat.succ (Nat.succ (length String List.nil))
===>
Nat.succ (Nat.succ Nat.zero)
===>
2
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The definition of length  is both polymorphic (because it takes the list entry type as an
argument) and recursive (because it refers to itself). Generally, functions follow the shape of
the data: recursive datatypes lead to recursive functions, and polymorphic datatypes lead to
polymorphic functions.

Names such as xs  and ys  are conventionally used to stand for lists of unknown values.
The s  in the name indicates that they are plural, so they are pronounced "exes" and "whys"
rather than "x s" and "y s".

To make it easier to read functions on lists, the bracket notation []  can be used to pattern-
match against nil , and an infix ::  can be used in place of cons :

Implicit Arguments

Both replaceX  and length  are somewhat bureaucratic to use, because the type argument
is typically uniquely determined by the later values. Indeed, in most languages, the compiler
is perfectly capable of determining type arguments on its own, and only occasionally needs
help from users. This is also the case in Lean. Arguments can be declared implicit by
wrapping them in curly braces instead of parentheses when defining a function. For
instance, a version of replaceX  with an implicit type argument looks like this:

It can be used with natOrigin  without providing Nat  explicitly, because Lean can infer the
value of α  from the later arguments:

Similarly, length  can be redefined to take the entry type implicitly:

def length (α : Type) (xs : List α) : Nat :=
  match xs with
  | List.nil => Nat.zero
  | List.cons y ys => Nat.succ (length α ys)

def length (α : Type) (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length α ys)

def replaceX {α : Type} (point : PPoint α) (newX : α) : PPoint α :=
  { point with x := newX }

#eval replaceX natOrigin 5

{ x := 5, y := 0 }
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This length  function can be applied directly to primesUnder10 :

In the standard library, Lean calls this function List.length , which means that the dot
syntax that is used for structure field access can also be used to find the length of a list:

Just as C# and Java require type arguments to be provided explicitly from time to time, Lean
is not always capable of finding implicit arguments. In these cases, they can be provided
using their names. For instance, a version of List.length  that only works for lists of
integers can be specified by setting α  to Int :

More Built-In Datatypes

In addition to lists, Lean's standard library contains a number of other structures and
inductive datatypes that can be used in a variety of contexts.

Option

Not every list has a first entry—some lists are empty. Many operations on collections may
fail to find what they are looking for. For instance, a function that finds the first entry in a list
may not find any such entry. It must therefore have a way to signal that there was no first
entry.

Many languages have a null  value that represents the absence of a value. Instead of
equipping existing types with a special null  value, Lean provides a datatype called Option
that equips some other type with an indicator for missing values. For instance, a nullable
Int  is represented by Option Int , and a nullable list of strings is represented by the type

def length {α : Type} (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

#eval length primesUnder10

4

#eval primesUnder10.length

4

#check List.length (α := Int)

List.length : List Int → Nat
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Option (List String) . Introducing a new type to represent nullability means that the type
system ensures that checks for null  cannot be forgotten, because an Option Int  can't be
used in a context where an Int  is expected.

Option  has two constructors, called some  and none , that respectively represent the non-
null and null versions of the underlying type. The non-null constructor, some , contains the
underlying value, while none  takes no arguments:

The Option  type is very similar to nullable types in languages like C# and Kotlin, but it is not
identical. In these languages, if a type (say, Boolean ) always refers to actual values of the
type ( true  and false ), the type Boolean?  or Nullable<Boolean>  additionally admits the
null  value. Tracking this in the type system is very useful: the type checker and other

tooling can help programmers remember to check for null, and APIs that explicitly describe
nullability through type signatures are more informative than ones that don't. However,
these nullable types differ from Lean's Option  in one very important way, which is that they
don't allow multiple layers of optionality. Option (Option Int)  can be constructed with
none , some none , or some (some 360) . C#, on the other hand, forbids multiple layers of

nullability by only allowing ?  to be added to non-nullable types, while Kotlin treats T??  as
being equivalent to T? . This subtle difference is rarely relevant in practice, but it can matter
from time to time.

To find the first entry in a list, if it exists, use List.head? . The question mark is part of the
name, and is not related to the use of question marks to indicate nullable types in C# or
Kotlin. In the definition of List.head? , an underscore is used to represent the tail of the
list. In patterns, underscores match anything at all, but do not introduce variables to refer to
the matched data. Using underscores instead of names is a way to clearly communicate to
readers that part of the input is ignored.

A Lean naming convention is to define operations that might fail in groups using the suffixes
?  for a version that returns an Option , !  for a version that crashes when provided with

invalid input, and D  for a version that returns a default value when the operation would
otherwise fail. For instance, head  requires the caller to provide mathematical evidence that
the list is not empty, head?  returns an Option , head!  crashes the program when passed
an empty list, and headD  takes a default value to return in case the list is empty. The
question mark and exclamation mark are part of the name, not special syntax, as Lean's
naming rules are more liberal than many languages.

inductive Option (α : Type) : Type where
  | none : Option α
  | some (val : α) : Option α

def List.head? {α : Type} (xs : List α) : Option α :=
  match xs with
  | [] => none
  | y :: _ => some y
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Because head?  is defined in the List  namespace, it can be used with accessor notation:

However, attempting to test it on the empty list leads to two errors:

This is because Lean was unable to fully determine the expression's type. In particular, it
could neither find the implicit type argument to List.head? , nor could it find the implicit
type argument to List.nil . In Lean's output, ?m.XYZ  represents a part of a program that
could not be inferred. These unknown parts are called metavariables, and they occur in
some error messages. In order to evaluate an expression, Lean needs to be able to find its
type, and the type was unavailable because the empty list does not have any entries from
which the type can be found. Explicitly providing a type allows Lean to proceed:

The type can also be provided with a type annotation:

The error messages provide a useful clue. Both messages use the same metavariable to
describe the missing implicit argument, which means that Lean has determined that the two
missing pieces will share a solution, even though it was unable to determine the actual
value of the solution.

#eval primesUnder10.head?

some 2

#eval [].head?

don't know how to synthesize implicit argument
  @List.nil ?m.20368
context:
⊢ Type ?u.20365

don't know how to synthesize implicit argument
  @_root_.List.head? ?m.20368 []
context:
⊢ Type ?u.20365

#eval [].head? (α := Int)

none

#eval ([] : List Int).head?

none
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Prod

The Prod  structure, short for "Product", is a generic way of joining two values together. For
instance, a Prod Nat String  contains a Nat  and a String . In other words, PPoint Nat
could be replaced by Prod Nat Nat . Prod  is very much like C#'s tuples, the Pair  and
Triple  types in Kotlin, and tuple  in C++. Many applications are best served by defining

their own structures, even for simple cases like Point , because using domain terminology
can make it easier to read the code. Additionally, defining structure types helps catch more
errors by assigning different types to different domain concepts, preventing them from
being mixed up.

On the other hand, there are some cases where it is not worth the overhead of defining a
new type. Additionally, some libraries are sufficiently generic that there is no more specific
concept than "pair". Finally, the standard library contains a variety of convenience functions
that make it easier to work with the built-in pair type.

The standard pair structure is called Prod .

Lists are used so frequently that there is special syntax to make them more readable. For
the same reason, both the product type and its constructor have special syntax. The type
Prod α β  is typically written α × β , mirroring the usual notation for a Cartesian product of

sets. Similarly, the usual mathematical notation for pairs is available for Prod . In other
words, instead of writing:

it suffices to write:

Both notations are right-associative. This means that the following definitions are
equivalent:

In other words, all products of more than two types, and their corresponding constructors,
are actually nested products and nested pairs behind the scenes.

structure Prod (α : Type) (β : Type) : Type where
  fst : α
  snd : β

def fives : String × Int := { fst := "five", snd := 5 }

def fives : String × Int := ("five", 5)

def sevens : String × Int × Nat := ("VII", 7, 4 + 3)

def sevens : String × (Int × Nat) := ("VII", (7, 4 + 3))
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Sum

The Sum  datatype is a generic way of allowing a choice between values of two different
types. For instance, a Sum String Int  is either a String  or an Int . Like Prod , Sum
should be used either when writing very generic code, for a very small section of code
where there is no sensible domain-specific type, or when the standard library contains
useful functions. In most situations, it is more readable and maintainable to use a custom
inductive type.

Values of type Sum α β  are either the constructor inl  applied to a value of type α  or the
constructor inr  applied to a value of type β :

These names are abbreviations for "left injection" and "right injection", respectively. Just as
the Cartesian product notation is used for Prod , a "circled plus" notation is used for Sum ,
so α ⊕ β  is another way to write Sum α β . There is no special syntax for Sum.inl  and
Sum.inr .

For instance, if pet names can either be dog names or cat names, then a type for them can
be introduced as a sum of strings:

In a real program, it would usually be better to define a custom inductive datatype for this
purpose with informative constructor names. Here, Sum.inl  is to be used for dog names,
and Sum.inr  is to be used for cat names. These constructors can be used to write a list of
animal names:

Pattern matching can be used to distinguish between the two constructors. For instance, a
function that counts the number of dogs in a list of animal names (that is, the number of
Sum.inl  constructors) looks like this:

Function calls are evaluated before infix operators, so howManyDogs morePets + 1  is the
same as (howManyDogs morePets) + 1 . As expected, #eval howManyDogs animals  yields
3 .

inductive Sum (α : Type) (β : Type) : Type where
  | inl : α → Sum α β
  | inr : β → Sum α β

def PetName : Type := String ⊕ String

def animals : List PetName :=
  [Sum.inl "Spot", Sum.inr "Tiger", Sum.inl "Fifi", Sum.inl "Rex", Sum.inr 
"Floof"]

def howManyDogs (pets : List PetName) : Nat :=
  match pets with
  | [] => 0
  | Sum.inl _ :: morePets => howManyDogs morePets + 1
  | Sum.inr _ :: morePets => howManyDogs morePets
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Unit

Unit  is a type with just one argumentless constructor, called unit . In other words, it
describes only a single value, which consists of said constructor applied to no arguments
whatsoever. Unit  is defined as follows:

On its own, Unit  is not particularly useful. However, in polymorphic code, it can be used as
a placeholder for data that is missing. For instance, the following inductive datatype
represents arithmetic expressions:

The type argument ann  stands for annotations, and each constructor is annotated.
Expressions coming from a parser might be annotated with source locations, so a return
type of ArithExpr SourcePos  ensures that the parser put a SourcePos  at each
subexpression. Expressions that don't come from the parser, however, will not have source
locations, so their type can be ArithExpr Unit .

Additionally, because all Lean functions have arguments, zero-argument functions in other
languages can be represented as functions that take a Unit  argument. In a return position,
the Unit  type is similar to void  in languages derived from C. In the C family, a function
that returns void  will return control to its caller, but it will not return any interesting value.
By being an intentionally uninteresting value, Unit  allows this to be expressed without
requiring a special-purpose void  feature in the type system. Unit's constructor can be
written as empty parentheses: () : Unit .

Empty

The Empty  datatype has no constructors whatsoever. Thus, it indicates unreachable code,
because no series of calls can ever terminate with a value at type Empty .

Empty  is not used nearly as often as Unit . However, it is useful in some specialized
contexts. Many polymorphic datatypes do not use all of their type arguments in all of their
constructors. For instance, Sum.inl  and Sum.inr  each use only one of Sum 's type
arguments. Using Empty  as one of the type arguments to Sum  can rule out one of the
constructors at a particular point in a program. This can allow generic code to be used in
contexts that have additional restrictions.

inductive Unit : Type where
  | unit : Unit

inductive ArithExpr (ann : Type) : Type where
  | int : ann → Int → ArithExpr ann
  | plus : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
  | minus : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
  | times : ann → ArithExpr ann → ArithExpr ann → ArithExpr ann
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Naming: Sums, Products, and Units

Generally speaking, types that offer multiple constructors are called sum types, while types
whose single constructor takes multiple arguments are called product types. These terms are
related to sums and products used in ordinary arithmetic. The relationship is easiest to see
when the types involved contain a finite number of values. If α  and β  are types that
contain  and  distinct values, respectively, then α ⊕ β  contains  distinct values and
α × β  contains  distinct values. For instance, Bool  has two values: true  and false ,

and Unit  has one value: Unit.unit . The product Bool × Unit  has the two values (true, 
Unit.unit)  and (false, Unit.unit) , and the sum Bool ⊕ Unit  has the three values
Sum.inl true , Sum.inl false , and Sum.inr unit . Similarly, , and .

Messages You May Meet

Not all definable structures or inductive types can have the type Type . In particular, if a
constructor takes an arbitrary type as an argument, then the inductive type must have a
different type. These errors usually state something about "universe levels". For example,
for this inductive type:

Lean gives the following error:

A later chapter describes why this is the case, and how to modify definitions to make them
work. For now, try making the type an argument to the inductive type as a whole, rather
than to the constructor.

Similarly, if a constructor's argument is a function that takes the datatype being defined as
an argument, then the definition is rejected. For example:

yields the message:

n k n + k

n × k

2 × 1 = 2 2 + 1 = 3

inductive MyType : Type where
  | ctor : (α : Type) → α → MyType

invalid universe level in constructor 'MyType.ctor', parameter 'α' has type
  Type
at universe level
  2
it must be smaller than or equal to the inductive datatype universe level
  1

inductive MyType : Type where
  | ctor : (MyType → Int) → MyType

(kernel) arg #1 of 'MyType.ctor' has a non positive occurrence of the datatypes 
being declared
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For technical reasons, allowing these datatypes could make it possible to undermine Lean's
internal logic, making it unsuitable for use as a theorem prover.

Forgetting an argument to an inductive type can also yield a confusing message. For
example, when the argument α  is not passed to MyType  in ctor 's type:

Lean replies with the following error:

The error message is saying that MyType 's type, which is Type → Type , does not itself
describe types. MyType  requires an argument to become an actual honest-to-goodness
type.

The same message can appear when type arguments are omitted in other contexts, such as
in a type signature for a definition:

Exercises

Write a function to find the last entry in a list. It should return an Option .
Write a function that finds the first entry in a list that satisfies a given predicate. Start
the definition with def List.findFirst? {α : Type} (xs : List α) (predicate : α 
→ Bool) : Option α :=

Write a function Prod.swap  that swaps the two fields in a pair. Start the definition with
def Prod.swap {α β : Type} (pair : α × β) : β × α :=

Rewrite the PetName  example to use a custom datatype and compare it to the version
that uses Sum .
Write a function zip  that combines two lists into a list of pairs. The resulting list
should be as long as the shortest input list. Start the definition with def zip {α β : 
Type} (xs : List α) (ys : List β) : List (α × β) := .
Write a polymorphic function take  that returns the first  entries in a list, where  is
a Nat . If the list contains fewer than n  entries, then the resulting list should be the
input list. #eval take 3 ["bolete", "oyster"]  should yield ["bolete", "oyster"] ,
and #eval take 1 ["bolete", "oyster"]  should yield ["bolete"] .

inductive MyType (α : Type) : Type where
  | ctor : α → MyType

type expected, got
  (MyType : Type → Type)

inductive MyType (α : Type) : Type where
  | ctor : α → MyType α

def ofFive : MyType := ctor 5

n n
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Using the analogy between types and arithmetic, write a function that distributes
products over sums. In other words, it should have type α × (β ⊕ γ) → (α × β) ⊕ (α 
× γ) .
Using the analogy between types and arithmetic, write a function that turns
multiplication by two into a sum. In other words, it should have type Bool × α → α ⊕ 
α .
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Additional Conveniences
Lean contains a number of convenience features that make programs much more concise.

Automatic Implicit Arguments

When writing polymorphic functions in Lean, it is typically not necessary to list all the
implicit arguments. Instead, they can simply be mentioned. If Lean can determine their type,
then they are automatically inserted as implicit arguments. In other words, the previous
definition of length :

can be written without {α : Type} :

This can greatly simplify highly polymorphic definitions that take many implicit arguments.

Pattern-Matching Definitions

When defining functions with def , it is quite common to name an argument and then
immediately use it with pattern matching. For instance, in length , the argument xs  is used
only in match . In these situations, the cases of the match  expression can be written
directly, without naming the argument at all.

The first step is to move the arguments' types to the right of the colon, so the return type is
a function type. For instance, the type of length  is List α → Nat . Then, replace the :=
with each case of the pattern match:

This syntax can also be used to define functions that take more than one argument. In this
case, their patterns are separated by commas. For instance, drop  takes a number  and a

def length {α : Type} (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

def length (xs : List α) : Nat :=
  match xs with
  | [] => 0
  | y :: ys => Nat.succ (length ys)

def length : List α → Nat
  | [] => 0
  | y :: ys => Nat.succ (length ys)

n
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list, and returns the list after removing the first  entries.

Named arguments and patterns can also be used in the same definition. For instance, a
function that takes a default value and an optional value, and returns the default when the
optional value is none , can be written:

This function is called Option.getD  in the standard library, and can be called with dot
notation:

Local Definitions

It is often useful to name intermediate steps in a computation. In many cases, intermediate
values represent useful concepts all on their own, and naming them explicitly can make the
program easier to read. In other cases, the intermediate value is used more than once. As in
most other languages, writing down the same code twice in Lean causes it to be computed
twice, while saving the result in a variable leads to the result of the computation being saved
and re-used.

For instance, unzip  is a function that transforms a list of pairs into a pair of lists. When the
list of pairs is empty, then the result of unzip  is a pair of empty lists. When the list of pairs
has a pair at its head, then the two fields of the pair are added to the result of unzipping the
rest of the list. This definition of unzip  follows that description exactly:

n

def drop : Nat → List α → List α
  | Nat.zero, xs => xs
  | _, [] => []
  | Nat.succ n, x :: xs => drop n xs

def fromOption (default : α) : Option α → α
  | none => default
  | some x => x

#eval (some "salmonberry").getD ""

"salmonberry"

#eval none.getD ""

""

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    (x :: (unzip xys).fst, y :: (unzip xys).snd)
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Unfortunately, there is a problem: this code is slower than it needs to be. Each entry in the
list of pairs leads to two recursive calls, which makes this function take exponential time.
However, both recursive calls will have the same result, so there is no reason to make the
recursive call twice.

In Lean, the result of the recursive call can be named, and thus saved, using let . Local
definitions with let  resemble top-level definitions with def : it takes a name to be locally
defined, arguments if desired, a type signature, and then a body following := . After the
local definition, the expression in which the local definition is available (called the body of
the let -expression) must be on a new line, starting at a column in the file that is less than
or equal to that of the let  keyword. For instance, let  can be used in unzip  like this:

To use let  on a single line, separate the local definition from the body with a semicolon.

Local definitions with let  may also use pattern matching when one pattern is enough to
match all cases of a datatype. In the case of unzip , the result of the recursive call is a pair.
Because pairs have only a single constructor, the name unzipped  can be replaced with a
pair pattern:

Judicious use of patterns with let  can make code easier to read, compared to writing the
accessor calls by hand.

The biggest difference between let  and def  is that recursive let  definitions must be
explicitly indicated by writing let rec . For instance, one way to reverse a list involves a
recursive helper function, as in this definition:

The helper function walks down the input list, moving one entry at a time over to soFar .
When it reaches the end of the input list, soFar  contains a reversed version of the input.

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped : List α × List β := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let (xs, ys) : List α × List β := unzip xys
    (x :: xs, y :: ys)

def reverse (xs : List α) : List α :=
  let rec helper : List α → List α → List α
    | [], soFar => soFar
    | y :: ys, soFar => helper ys (y :: soFar)
  helper xs []
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Type Inference

In many situations, Lean can automatically determine an expression's type. In these cases,
explicit types may be omitted from both top-level definitions (with def ) and local
definitions (with let ). For instance, the recursive call to unzip  does not need an
annotation:

As a rule of thumb, omitting the types of literal values (like strings and numbers) usually
works, although Lean may pick a type for literal numbers that is more specific than the
intended type. Lean can usually determine a type for a function application, because it
already knows the argument types and the return type. Omitting return types for function
definitions will often work, but function arguments typically require annotations. Definitions
that are not functions, like unzipped  in the example, do not need type annotations if their
bodies do not need type annotations, and the body of this definition is a function
application.

Omitting the return type for unzip  is possible when using an explicit match  expression:

Generally speaking, it is a good idea to err on the side of too many, rather than too few, type
annotations. First off, explicit types communicate assumptions about the code to readers.
Even if Lean can determine the type on its own, it can still be easier to read code without
having to repeatedly query Lean for type information. Secondly, explicit types help localize
errors. The more explicit a program is about its types, the more informative the error
messages can be. This is especially important in a language like Lean that has a very
expressive type system. Thirdly, explicit types make it easier to write the program in the first
place. The type is a specification, and the compiler's feedback can be a helpful tool in writing
a program that meets the specification. Finally, Lean's type inference is a best-effort system.
Because Lean's type system is so expressive, there is no "best" or most general type to find
for all expressions. This means that even if you get a type, there's no guarantee that it's the
right type for a given application. For instance, 14  can be a Nat  or an Int :

def unzip : List (α × β) → List α × List β
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

def unzip (pairs : List (α × β)) :=
  match pairs with
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

#check 14

14 : Nat
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Missing type annotations can give confusing error messages. Omitting all types from the
definition of unzip :

leads to a message about the match  expression:

This is because match  needs to know the type of the value being inspected, but that type
was not available. A "metavariable" is an unknown part of a program, written ?m.XYZ  in
error messages—they are described in the section on Polymorphism. In this program, the
type annotation on the argument is required.

Even some very simple programs require type annotations. For instance, the identity
function just returns whatever argument it is passed. With argument and type annotations,
it looks like this:

Lean is capable of determining the return type on its own:

Omitting the argument type, however, causes an error:

In general, messages that say something like "failed to infer" or that mention metavariables
are often a sign that more type annotations are necessary. Especially while still learning
Lean, it is useful to provide most types explicitly.

#check (14 : Int)

14 : Int

def unzip pairs :=
  match pairs with
  | [] => ([], [])
  | (x, y) :: xys =>
    let unzipped := unzip xys
    (x :: unzipped.fst, y :: unzipped.snd)

invalid match-expression, pattern contains metavariables
  []

def id (x : α) : α := x

def id (x : α) := x

def id x := x

failed to infer binder type
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Simultaneous Matching

Pattern-matching expressions, just like pattern-matching definitions, can match on multiple
values at once. Both the expressions to be inspected and the patterns that they match
against are written with commas between them, similarly to the syntax used for definitions.
Here is a version of drop  that uses simultaneous matching:

Natural Number Patterns

In the section on datatypes and patterns, even  was defined like this:

Just as there is special syntax to make list patterns more readable than using List.cons
and List.nil  directly, natural numbers can be matched using literal numbers and + . For
instance, even  can also be defined like this:

In this notation, the arguments to the +  pattern serve different roles. Behind the scenes,
the left argument ( n  above) becomes an argument to some number of Nat.succ  patterns,
and the right argument ( 1  above) determines how many Nat.succ s to wrap around the
pattern. The explicit patterns in halve , which divides a Nat  by two and drops the
remainder:

can be replaced by numeric literals and + :

def drop (n : Nat) (xs : List α) : List α :=
  match n, xs with
  | Nat.zero, ys => ys
  | _, [] => []
  | Nat.succ n , y :: ys => drop n ys

def even (n : Nat) : Bool :=
  match n with
  | Nat.zero => true
  | Nat.succ k => not (even k)

def even : Nat → Bool
  | 0 => true
  | n + 1 => not (even n)

def halve : Nat → Nat
  | Nat.zero => 0
  | Nat.succ Nat.zero => 0
  | Nat.succ (Nat.succ n) => halve n + 1
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Behind the scenes, both definitions are completely equivalent. Remember: halve n + 1  is
equivalent to (halve n) + 1 , not halve (n + 1) .

When using this syntax, the second argument to +  should always be a literal Nat . Even
though addition is commutative, flipping the arguments in a pattern can result in errors like
the following:

This restriction enables Lean to transform all uses of the +  notation in a pattern into uses
of the underlying Nat.succ , keeping the language simpler behind the scenes.

Anonymous Functions

Functions in Lean need not be defined at the top level. As expressions, functions are
produced with the fun  syntax. Function expressions begin with the keyword fun , followed
by one or more arguments, which are separated from the return expression using => . For
instance, a function that adds one to a number can be written:

Type annotations are written the same way as on def , using parentheses and colons:

Similarly, implicit arguments may be written with curly braces:

def halve : Nat → Nat
  | 0 => 0
  | 1 => 0
  | n + 2 => halve n + 1

def halve : Nat → Nat
  | 0 => 0
  | 1 => 0
  | 2 + n => halve n + 1

invalid patterns, `n` is an explicit pattern variable, but it only occurs in 
positions that are inaccessible to pattern matching
  .(Nat.add 2 n)

#check fun x => x + 1

fun x => x + 1 : Nat → Nat

#check fun (x : Int) => x + 1

fun x => x + 1 : Int → Int

#check fun {α : Type} (x : α) => x
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This style of anonymous function expression is often referred to as a lambda expression,
because the typical notation used in mathematical descriptions of programming languages
uses the Greek letter λ (lambda) where Lean has the keyword fun . Even though Lean does
permit λ  to be used instead of fun , it is most common to write fun .

Anonymous functions also support the multiple-pattern style used in def . For instance, a
function that returns the predecessor of a natural number if it exists can be written:

Note that Lean's own description of the function has a named argument and a match
expression. Many of Lean's convenient syntactic shorthands are expanded to simpler syntax
behind the scenes, and the abstraction sometimes leaks.

Definitions using def  that take arguments may be rewritten as function expressions. For
instance, a function that doubles its argument can be written as follows:

When an anonymous function is very simple, like fun x => x + 1 , the syntax for creating
the function can be fairly verbose. In that particular example, six non-whitespace characters
are used to introduce the function, and its body consists of only three non-whitespace
characters. For these simple cases, Lean provides a shorthand. In an expression surrounded
by parentheses, a centered dot character ·  can stand for an argument, and the expression
inside the parentheses becomes the function's body. That particular function can also be
written (· + 1) .

The centered dot always creates a function out of the closest surrounding set of
parentheses. For instance, (· + 5, 3)  is a function that returns a pair of numbers, while
((· + 5), 3)  is a pair of a function and a number. If multiple dots are used, then they

become arguments from left to right:

fun {α} x => x : {α : Type} → α → α

#check fun
  | 0 => none
  | n + 1 => some n

fun x =>
  match x with
  | 0 => none
  | Nat.succ n => some n : Nat → Option Nat

def double : Nat → Nat := fun
  | 0 => 0
  | k + 1 => double k + 2

(· , ·) 1 2
===>
(1, ·) 2
===>
(1, 2)
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Anonymous functions can be applied in precisely the same way as functions defined using
def  or let . The command #eval (fun x => x + x) 5  results in:

while #eval (· * 2) 5  results in:

Namespaces

Each name in Lean occurs in a namespace, which is a collection of names. Names are placed
in namespaces using . , so List.map  is the name map  in the List  namespace. Names in
different namespaces do not conflict with each other, even if they are otherwise identical.
This means that List.map  and Array.map  are different names. Namespaces may be
nested, so Project.Frontend.User.loginTime  is the name loginTime  in the nested
namespace Project.Frontend.User .

Names can be directly defined within a namespace. For instance, the name double  can be
defined in the Nat  namespace:

Because Nat  is also the name of a type, dot notation is available to call Nat.double  on
expressions with type Nat :

In addition to defining names directly in a namespace, a sequence of declarations can be
placed in a namespace using the namespace  and end  commands. For instance, this defines
triple  and quadruple  in the namespace NewNamespace :

To refer to them, prefix their names with NewNamespace. :

10

10

def Nat.double (x : Nat) : Nat := x + x

#eval (4 : Nat).double

8

namespace NewNamespace
def triple (x : Nat) : Nat := 3 * x
def quadruple (x : Nat) : Nat := 2 * x + 2 * x
end NewNamespace

#check NewNamespace.triple
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Namespaces may be opened, which allows the names in them to be used without explicit
qualification. Writing open MyNamespace in  before an expression causes the contents of
MyNamespace  to be available in the expression. For example, timesTwelve  uses both
quadruple  and triple  after opening NewNamespace :

Namespaces can also be opened prior to a command. This allows all parts of the command
to refer to the contents of the namespace, rather than just a single expression. To do this,
place the open ... in  prior to the command.

Function signatures show the name's full namespace. Namespaces may additionally be
opened for all following commands for the rest of the file. To do this, simply omit the in
from a top-level usage of open .

if let

When consuming values that have a sum type, it is often the case that only a single
constructor is of interest. For instance, given this type that represents a subset of Markdown
inline elements:

a function that recognizes string elements and extracts their contents can be written:

NewNamespace.triple (x : Nat) : Nat

#check NewNamespace.quadruple

NewNamespace.quadruple (x : Nat) : Nat

def timesTwelve (x : Nat) :=
  open NewNamespace in
  quadruple (triple x)

open NewNamespace in
#check quadruple

NewNamespace.quadruple (x : Nat) : Nat

inductive Inline : Type where
  | lineBreak
  | string : String → Inline
  | emph : Inline → Inline
  | strong : Inline → Inline
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An alternative way of writing this function's body uses if  together with let :

This is very much like the pattern-matching let  syntax. The difference is that it can be used
with sum types, because a fallback is provided in the else  case. In some contexts, using if 
let  instead of match  can make code easier to read.

Positional Structure Arguments

The section on structures presents two ways of constructing structures:

1. The constructor can be called directly, as in Point.mk 1 2 .
2. Brace notation can be used, as in { x := 1, y := 2 } .

In some contexts, it can be convenient to pass arguments positionally, rather than by name,
but without naming the constructor directly. For instance, defining a variety of similar
structure types can help keep domain concepts separate, but the natural way to read the
code may treat each of them as being essentially a tuple. In these contexts, the arguments
can be enclosed in angle brackets ⟨  and ⟩ . A Point  can be written ⟨1, 2⟩ . Be careful!
Even though they look like the less-than sign <  and greater-than sign > , these brackets are
different. They can be input using \<  and \> , respectively.

Just as with the brace notation for named constructor arguments, this positional syntax can
only be used in a context where Lean can determine the structure's type, either from a type
annotation or from other type information in the program. For instance, #eval ⟨1, 2⟩
yields the following error:

The metavariable in the error is because there is no type information available. Adding an
annotation, such as in #eval (⟨1, 2⟩ : Point) , solves the problem:

def Inline.string? (inline : Inline) : Option String :=
  match inline with
  | Inline.string s => some s
  | _ => none

def Inline.string? (inline : Inline) : Option String :=
  if let Inline.string s := inline then
    some s
  else none

invalid constructor ⟨...⟩, expected type must be an inductive type 
  ?m.35347

{ x := 1.000000, y := 2.000000 }
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String Interpolation

In Lean, prefixing a string with s!  triggers interpolation, where expressions contained in
curly braces inside the string are replaced with their values. This is similar to f -strings in
Python and $ -prefixed strings in C#. For instance,

yields the output

Not all expressions can be interpolated into a string. For instance, attempting to interpolate
a function results in an error.

yields the output

This is because there is no standard way to convert functions into strings. The Lean
compiler maintains a table that describes how to convert values of various types into
strings, and the message failed to synthesize instance  means that the Lean compiler
didn't find an entry in this table for the given type. This uses the same language feature as
the deriving Repr  syntax that was described in the section on structures.

#eval s!"three fives is {NewNamespace.triple 5}"

"three fives is 15"

#check s!"three fives is {NewNamespace.triple}"

failed to synthesize instance
  ToString (Nat → Nat)
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Summary

Evaluating Expressions

In Lean, computation occurs when expressions are evaluated. This follows the usual rules of
mathematical expressions: sub-expressions are replaced by their values following the usual
order of operations, until the entire expression has become a value. When evaluating an if
or a match , the expressions in the branches are not evaluated until the value of the
condition or the match subject has been found.

Once they have been given a value, variables never change. Similarly to mathematics but
unlike most programming languages, Lean variables are simply placeholders for values,
rather than addresses to which new values can be written. Variables' values may come from
global definitions with def , local definitions with let , as named arguments to functions, or
from pattern matching.

Functions

Functions in Lean are first-class values, meaning that they can be passed as arguments to
other functions, saved in variables, and used like any other value. Every Lean function takes
exactly one argument. To encode a function that takes more than one argument, Lean uses
a technique called currying, where providing the first argument returns a function that
expects the remaining arguments. To encode a function that takes no arguments, Lean uses
the Unit  type, which is the least informative possible argument.

There are three primary ways of creating functions:

1. Anonymous functions are written using fun . For instance, a function that swaps the
fields of a Point  can be written fun (point : Point) => { x := point.y, y := 
point.x : Point}

2. Very simple anonymous functions are written by placing one or more centered dots ·
inside of parentheses. Each centered dot becomes an argument to the function, and
the parentheses delimit its body. For instance, a function that subtracts one from its
argument can be written as (· - 1)  instead of as fun x => x - 1 .

3. Functions can be defined using def  or let  by adding an argument list or by using
pattern-matching notation.
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Types

Lean checks that every expression has a type. Types, such as Int , Point , {α : Type} → 
Nat → α → List α , and Option (String ⊕ (Nat × String)) , describe the values that may
eventually be found for an expression. Like other languages, types in Lean can express
lightweight specifications for programs that are checked by the Lean compiler, obviating the
need for certain classes of unit test. Unlike most languages, Lean's types can also express
arbitrary mathematics, unifying the worlds of programming and theorem proving. While
using Lean for proving theorems is mostly out of scope for this book, Theorem Proving in
Lean 4 contains more information on this topic.

Some expressions can be given multiple types. For instance, 3  can be an Int  or a Nat . In
Lean, this should be understood as two separate expressions, one with type Nat  and one
with type Int , that happen to be written in the same way, rather than as two different
types for the same thing.

Lean is sometimes able to determine types automatically, but types must often be provided
by the user. This is because Lean's type system is so expressive. Even when Lean can find a
type, it may not find the desired type— 3  could be intended to be used as an Int , but Lean
will give it the type Nat  if there are no further constraints. In general, it is a good idea to
write most types explicitly, only letting Lean fill out the very obvious types. This improves
Lean's error messages and helps make programmer intent more clear.

Some functions or datatypes take types as arguments. They are called polymorphic.
Polymorphism allows programs such as one that calculates the length of a list without
caring what type the entries in the list have. Because types are first class in Lean,
polymorphism does not require any special syntax, so types are passed just like other
arguments. Giving an argument a name in a function type allows later types to mention that
argument, and the type of applying that function to an argument is found by replacing the
argument's name with the argument's value.

Structures and Inductive Types

Brand new datatypes can be introduced to Lean using the structure  or inductive
features. These new types are not considered to be equivalent to any other type, even if
their definitions are otherwise identical. Datatypes have constructors that explain the ways in
which their values can be constructed, and each constructor takes some number of
arguments. Constructors in Lean are not the same as constructors in object-oriented
languages: Lean's constructors are inert holders of data, rather than active code that
initializes an allocated object.

Typically, structure  is used to introduce a product type (that is, a type with just one
constructor that takes any number of arguments), while inductive  is used to introduce a
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sum type (that is, a type with many distinct constructors). Datatypes defined with
structure  are provided with one accessor function for each of the constructor's

arguments. Both structures and inductive datatypes may be consumed with pattern
matching, which exposes the values stored inside of constructors using a subset of the
syntax used to call said constructors. Pattern matching means that knowing how to create a
value implies knowing how to consume it.

Recursion

A definition is recursive when the name being defined is used in the definition itself.
Because Lean is an interactive theorem prover in addition to being a programming
language, there are certain restrictions placed on recursive definitions. In Lean's logical side,
circular definitions could lead to logical inconsistency.

In order to ensure that recursive definitions do not undermine the logical side of Lean, Lean
must be able to prove that all recursive functions terminate, no matter what arguments
they are called with. In practice, this means either that recursive calls are all performed on a
structurally-smaller piece of the input, which ensures that there is always progress towards
a base case, or that users must provide some other evidence that the function always
terminates. Similarly, recursive inductive types are not allowed to have a constructor that
takes a function from the type as an argument, because this would make it possible to
encode non-terminating functions.



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 63/432

Hello, World!
While Lean has been designed to have a rich interactive environment in which programmers
can get quite a lot of feedback from the language without leaving the confines of their
favorite text editor, it is also a language in which real programs can be written. This means
that it also has a batch-mode compiler, a build system, a package manager, and all the other
tools that are necessary for writing programs.

While the previous chapter presented the basics of functional programming in Lean, this
chapter explains how to start a programming project, compile it, and run the result.
Programs that run and interact with their environment (e.g. by reading input from standard
input or creating files) are difficult to reconcile with the understanding of computation as
the evaluation of mathematical expressions. In addition to a description of the Lean build
tools, this chapter also provides a way to think about functional programs that interact with
the world.
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Running a Program
The simplest way to run a Lean program is to use the --run  option to the Lean executable.
Create a file called Hello.lean  and enter the following contents:

Then, from the command line, run:

The program displays Hello, world!  and exits.

Anatomy of a Greeting

When Lean is invoked with the --run  option, it invokes the program's main  definition. In
programs that do not take command-line arguments, main  should have type IO Unit . This
means that main  is not a function, because there are no arrows ( → ) in its type. Instead of
being a function that has side effects, main  consists of a description of effects to be carried
out.

As discussed in the preceding chapter, Unit  is the simplest inductive type. It has a single
constructor called unit  that takes no arguments. Languages in the C tradition have a
notion of a void  function that does not return any value at all. In Lean, all functions take an
argument and return a value, and the lack of interesting arguments or return values can be
signaled by using the Unit  type instead. If Bool  represents a single bit of information,
Unit  represents zero bits of information.

IO α  is the type of a program that, when executed, will either throw an exception or return
a value of type α . During execution, this program may have side effects. These programs
are referred to as IO  actions. Lean distinguishes between evaluation of expressions, which
strictly adheres to the mathematical model of substitution of values for variables and
reduction of sub-expressions without side effects, and execution of IO  actions, which rely
on an external system to interact with the world. IO.println  is a function from strings to
IO  actions that, when executed, write the given string to standard output. Because this

action doesn't read any interesting information from the environment in the process of
emitting the string, IO.println  has type String → IO Unit . If it did return something
interesting, then that would be indicated by the IO  action having a type other than Unit .

def main : IO Unit := IO.println "Hello, world!"

lean --run Hello.lean



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 65/432

Functional Programming vs Effects

Lean's model of computation is based on the evaluation of mathematical expressions, in
which variables are given exactly one value that does not change over time. The result of
evaluating an expression does not change, and evaluating the same expression again will
always yield the same result.

On the other hand, useful programs must interact with the world. A program that performs
neither input nor output can't ask a user for data, create files on disk, or open network
connections. Lean is written in itself, and the Lean compiler certainly reads files, creates
files, and interacts with text editors. How can a language in which the same expression
always yields the same result support programs that read files from disk, when the contents
of these files might change over time?

This apparent contradiction can be resolved by thinking a bit differently about side effects.
Imagine a café that sells coffee and sandwiches. This café has two employees: a cook who
fulfills orders, and a worker at the counter who interacts with customers and places order
slips. The cook is a surly person, who really prefers not to have any contact with the world
outside, but who is very good at consistently delivering the food and drinks that the café is
known for. In order to do this, however, the cook needs peace and quiet, and can't be
disturbed with conversation. The counter worker is friendly, but completely incompetent in
the kitchen. Customers interact with the counter worker, who delegates all actual cooking to
the cook. If the cook has a question for a customer, such as clarifying an allergy, they send a
little note to the counter worker, who interacts with the customer and passes a note back to
the cook with the result.

In this analogy, the cook is the Lean language. When provided with an order, the cook
faithfully and consistently delivers what is requested. The counter worker is the surrounding
run-time system that interacts with the world and can accept payments, dispense food, and
have conversations with customers. Working together, the two employees serve all the
functions of the restaurant, but their responsibilities are divided, with each performing the
tasks that they're best at. Just as keeping customers away allows the cook to focus on
making truly excellent coffee and sandwiches, Lean's lack of side effects allows programs to
be used as part of formal mathematical proofs. It also helps programmers understand the
parts of the program in isolation from each other, because there are no hidden state
changes that create subtle coupling between components. The cook's notes represent IO
actions that are produced by evaluating Lean expressions, and the counter worker's replies
are the values that are passed back from effects.

This model of side effects is quite similar to how the overall aggregate of the Lean language,
its compiler, and its run-time system (RTS) work. Primitives in the run-time system, written
in C, implement all the basic effects. When running a program, the RTS invokes the main
action, which returns new IO  actions to the RTS for execution. The RTS executes these
actions, delegating to the user's Lean code to carry out computations. From the internal
perspective of Lean, programs are free of side effects, and IO  actions are just descriptions
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of tasks to be carried out. From the external perspective of the program's user, there is a
layer of side effects that create an interface to the program's core logic.

Real-World Functional Programming

The other useful way to think about side effects in Lean is by considering IO  actions to be
functions that take the entire world as an argument and return a value paired with a new
world. In this case, reading a line of text from standard input is a pure function, because a
different world is provided as an argument each time. Writing a line of text to standard
output is a pure function, because the world that the function returns is different from the
one that it began with. Programs do need to be careful to never re-use the world, nor to fail
to return a new world—this would amount to time travel or the end of the world, after all.
Careful abstraction boundaries can make this style of programming safe. If every primitive
IO  action accepts one world and returns a new one, and they can only be combined with

tools that preserve this invariant, then the problem cannot occur.

This model cannot be implemented. After all, the entire universe cannot be turned into a
Lean value and placed into memory. However, it is possible to implement a variation of this
model with an abstract token that stands for the world. When the program is started, it is
provided with a world token. This token is then passed on to the IO primitives, and their
returned tokens are similarly passed to the next step. At the end of the program, the token
is returned to the operating system.

This model of side effects is a good description of how IO  actions as descriptions of tasks
to be carried out by the RTS are represented internally in Lean. The actual functions that
transform the real world are behind an abstraction barrier. But real programs typically
consist of a sequence of effects, rather than just one. To enable programs to use multiple
effects, there is a sub-language of Lean called do  notation that allows these primitive IO
actions to be safely composed into a larger, useful program.

Combining IO Actions

Most useful programs accept input in addition to producing output. Furthermore, they may
take decisions based on input, using the input data as part of a computation. The following
program, called HelloName.lean , asks the user for their name and then greets them:
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In this program, the main  action consists of a do  block. This block contains a sequence of
statements, which can be both local variables (introduced using let ) and actions that are to
be executed. Just as SQL can be thought of as a special-purpose language for interacting
with databases, the do  syntax can be thought of as a special-purpose sub-language within
Lean that is dedicated to modeling imperative programs. IO  actions that are built with a
do  block are executed by executing the statements in order.

This program can be run in the same manner as the prior program:

If the user responds with David , a session of interaction with the program reads:

The type signature line is just like the one for Hello.lean :

The only difference is that it ends with the keyword do , which initiates a sequence of
commands. Each indented line following the keyword do  is part of the same sequence of
commands.

The first two lines, which read:

retrieve the stdin  and stdout  handles by executing the library actions IO.getStdin  and
IO.getStdout , respectively. In a do  block, let  has a slightly different meaning than in an

ordinary expression. Ordinarily, the local definition in a let  can be used in just one
expression, which immediately follows the local definition. In a do  block, local bindings
introduced by let  are available in all statements in the remainder of the do  block, rather
than just the next one. Additionally, let  typically connects the name being defined to its
definition using := , while some let  bindings in do  use a left arrow ( ←  or <- ) instead.
Using an arrow means that the value of the expression is an IO  action that should be

def main : IO Unit := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace

  stdout.putStrLn s!"Hello, {name}!"

lean --run HelloName.lean

How would you like to be addressed?
David
Hello, David!

def main : IO Unit := do

  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
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executed, with the result of the action saved in the local variable. In other words, if the
expression to the right of the arrow has type IO α , then the variable has type α  in the
remainder of the do  block. IO.getStdin  and IO.getStdout  are IO  actions in order to
allow stdin  and stdout  to be locally overridden in a program, which can be convenient. If
they were global variables as in C, then there would be no meaningful way to override them,
but IO  actions can return different values each time they are executed.

The next part of the do  block is responsible for asking the user for their name:

The first line writes the question to stdout , the second line requests input from stdin ,
and the third line removes the trailing newline (plus any other trailing whitespace) from the
input line. The definition of name  uses := , rather than ← , because
String.dropRightWhile  is an ordinary function on strings, rather than an IO  action.

Finally, the last line in the program is:

It uses string interpolation to insert the provided name into a greeting string, writing the
result to stdout .

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace

  stdout.putStrLn s!"Hello, {name}!"
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Step By Step
A do  block can be executed one line at a time. Start with the program from the prior
section:

Standard IO

The first line is   let stdin ← IO.getStdin , while the remainder is:

To execute a let  statement that uses a ← , start by evaluating the expression to the right of
the arrow (in this case, IO.getStdIn ). Because this expression is just a variable, its value is
looked up. The resulting value is a built-in primitive IO  action. The next step is to execute
this IO  action, resulting in a value that represents the standard input stream, which has
type IO.FS.Stream . Standard input is then associated with the name to the left of the arrow
(here stdin ) for the remainder of the do  block.

Executing the second line,   let stdout ← IO.getStdout , proceeds similarly. First, the
expression IO.getStdout  is evaluated, yielding an IO  action that will return the standard
output. Next, this action is executed, actually returning the standard output. Finally, this
value is associated with the name stdout  for the remainder of the do  block.

Asking a Question

Now that stdin  and stdout  have been found, the remainder of the block consists of a
question and an answer:

  let stdin ← IO.getStdin
  let stdout ← IO.getStdout
  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

  let stdout ← IO.getStdout
  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"
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The first statement in the block,   stdout.putStrLn "How would you like to be 
addressed?" , consists of an expression. To execute an expression, it is first evaluated. In
this case, IO.FS.Stream.putStrLn  has type IO.FS.Stream → String → IO Unit . This
means that it is a function that accepts a stream and a string, returning an IO  action. The
expression uses accessor notation for a function call. This function is applied to two
arguments: the standard output stream and a string. The value of the expression is an IO
action that will write the string and a newline character to the output stream. Having found
this value, the next step is to execute it, which causes the string and newline to actually be
written to stdout . Statements that consist only of expressions do not introduce any new
variables.

The next statement in the block is   let input ← stdin.getLine . IO.FS.Stream.getLine
has type IO.FS.Stream → IO String , which means that it is a function from a stream to an
IO  action that will return a string. Once again, this is an example of accessor notation. This
IO  action is executed, and the program waits until the user has typed a complete line of

input. Assume the user writes " David ". The resulting line ( "David\n" ) is associated with
input , where the escape sequence \n  denotes the newline character.

The next line,   let name := input.dropRightWhile Char.isWhitespace , is a let
statement. Unlike the other let  statements in this program, it uses :=  instead of ← . This
means that the expression will be evaluated, but the resulting value need not be an IO
action and will not be executed. In this case, String.dropRightWhile  takes a string and a
predicate over characters and returns a new string from which all the characters at the end
of the string that satisfy the predicate have been removed. For example,

yields

and

yields

  stdout.putStrLn "How would you like to be addressed?"
  let input ← stdin.getLine
  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

  let name := input.dropRightWhile Char.isWhitespace
  stdout.putStrLn s!"Hello, {name}!"

#eval "Hello!!!".dropRightWhile (· == '!')

"Hello"

#eval "Hello...   ".dropRightWhile (fun c => not (c.isAlphanum))

"Hello"
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in which all non-alphanumeric characters have been removed from the right side of the
string. In the current line of the program, whitespace characters (including the newline) are
removed from the right side of the input string, resulting in "David" , which is associated
with name  for the remainder of the block.

Greeting the User

All that remains to be executed in the do  block is a single statement:

The string argument to putStrLn  is constructed via string interpolation, yielding the string
"Hello, David!" . Because this statement is an expression, it is evaluated to yield an IO

action that will print this string with a newline to standard output. Once the expression has
been evaluated, the resulting IO  action is executed, resulting in the greeting.

IO Actions as Values

In the above description, it can be difficult to see why the distinction between evaluating
expressions and executing IO  actions is necessary. After all, each action is executed
immediately after it is produced. Why not simply carry out the effects during evaluation, as
is done in other languages?

The answer is twofold. First off, separating evaluation from execution means that programs
must be explicit about which functions can have side effects. Because the parts of the
program that do not have effects are much more amenable to mathematical reasoning,
whether in the heads of programmers or using Lean's facilities for formal proof, this
separation can make it easier to avoid bugs. Secondly, not all IO  actions need be executed
at the time that they come into existence. The ability to mention an action without carrying
it out allows ordinary functions to be used as control structures.

For instance, the function twice  takes an IO  action as its argument, returning a new action
that will execute the first one twice.

For instance, executing

  stdout.putStrLn s!"Hello, {name}!"

def twice (action : IO Unit) : IO Unit := do
  action
  action

twice (IO.println "shy")
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results in

being printed. This can be generalized to a version that runs the underlying action any
number of times:

In the base case for Nat.zero , the result is pure () . The function pure  creates an IO
action that has no side effects, but returns pure 's argument, which in this case is the
constructor for Unit . As an action that does nothing and returns nothing interesting, pure 
()  is at the same time utterly boring and very useful. In the recursive step, a do  block is
used to create an action that first executes action  and then executes the result of the
recursive call. Executing nTimes (IO.println "Hello") 3  causes the following output:

In addition to using functions as control structures, the fact that IO  actions are first-class
values means that they can be saved in data structures for later execution. For instance, the
function countdown  takes a Nat  and returns a list of unexecuted IO  actions, one for each
Nat :

This function has no side effects, and does not print anything. For example, it can be applied
to an argument, and the length of the resulting list of actions can be checked:

This list contains six elements (one for each number, plus a "Blast off!"  action for zero):

The function runActions  takes a list of actions and constructs a single action that runs
them all in order:

shy
shy

def nTimes (action : IO Unit) : Nat → IO Unit
  | 0 => pure ()
  | n + 1 => do
    action
    nTimes action n

Hello
Hello
Hello

def countdown : Nat → List (IO Unit)
  | 0 => [IO.println "Blast off!"]
  | n + 1 => IO.println s!"{n + 1}" :: countdown n

def from5 : List (IO Unit) := countdown 5

#eval from5.length

6
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Its structure is essentially the same as that of nTimes , except instead of having one action
that is executed for each Nat.succ , the action under each List.cons  is to be executed.
Similarly, runActions  does not itself run the actions. It creates a new action that will run
them, and that action must be placed in a position where it will be executed as a part of
main :

Running this program results in the following output:

What happens when this program is run? The first step is to evaluate main . That occurs as
follows:

The resulting IO  action is a do  block. Each step of the do  block is then executed, one at a
time, yielding the expected output. The final step, pure () , does not have any effects, and
it is only present because the definition of runActions  needs a base case.

def runActions : List (IO Unit) → IO Unit
  | [] => pure ()
  | act :: actions => do
    act
    runActions actions

def main : IO Unit := runActions from5

5
4
3
2
1
Blast off!

main
===>
runActions from5
===>
runActions (countdown 5)
===>
runActions
  [IO.println "5",
   IO.println "4",
   IO.println "3",
   IO.println "2",
   IO.println "1",
   IO.println "Blast off!"]
===>
do IO.println "5"
   IO.println "4"
   IO.println "3"
   IO.println "2"
   IO.println "1"
   IO.println "Blast off!"
   pure ()
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Exercise

Step through the execution of the following program on a piece of paper:

While stepping through the program's execution, identify when an expression is being
evaluated and when an IO  action is being executed. When executing an IO  action results
in a side effect, write it down. After doing this, run the program with Lean and double-check
that your predictions about the side effects were correct.

def main : IO Unit := do
  let englishGreeting := IO.println "Hello!"
  IO.println "Bonjour!"
  englishGreeting
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Starting a Project
As a program written in Lean becomes more serious, an ahead-of-time compiler-based
workflow that results in an executable becomes more attractive. Like other languages, Lean
has tools for building multiple-file packages and managing dependencies. The standard
Lean build tool is called Lake (short for "Lean Make"), and it is configured in Lean. Just as
Lean contains a special-purpose language for writing programs with effects (the do
language), Lake contains a special-purpose language for configuring builds. These languages
are referred to as embedded domain-specific languages (or sometimes domain-specific
embedded languages, abbreviated EDSL or DSEL). They are domain-specific in the sense that
they are used for a particular purpose, with concepts from some sub-domain, and they are
typically not suitable for general-purpose programming. They are embedded because they
occur inside another language's syntax. While Lean contains rich facilities for creating
EDSLs, they are beyond the scope of this book.

First steps

To get started with a project that uses Lake, use the command lake new greeting  in a
directory that does not already contain a file or directory called greeting . This creates a
directory called greeting  that contains the following files:

Main.lean  is the file in which the Lean compiler will look for the main  action.
Greeting.lean  is the scaffolding of a support library for the program.
lakefile.lean  contains the configuration that lake  needs to build the application.
lean-toolchain  contains an identifier for the specific version of Lean that is used for

the project.

Additionally, lake new  initializes the project as a Git repository and configures its
.gitignore  file to ignore intermediate build products. Typically, the majority of the

application logic will be in a collection of libraries for the program, while Main.lean  will
contain a small wrapper around these pieces that does things like parsing command lines
and executing the central application logic. To create a project in an already-existing
directory, run lake init  instead of lake new .

By default, the library file Greeting.lean  contains a single definition:

while the executable source Main.lean  contains:

def hello := "world"
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The import  line makes the contents of Greeting.lean  available in Main.lean . Placing
guillemets around a name, as in «Greeting» , allow it to contain spaces or other characters
that are normally not allowed in Lean names, and it allows reserved keywords such as if
or def  to be used as ordinary names by writing «if»  or «def» . This prevents issues when
the package name provided to lake new  contains such characters.

To build the package, run the command lake build . After a number of build commands
scroll by, the resulting binary has been placed in build/bin . Running
./build/bin/greeting  results in Hello, world! .

Lakefiles

A lakefile.lean  describes a package, which is a coherent collection of Lean code for
distribution, analogous to an npm  or nuget  package or a Rust crate. A package may contain
any number of libraries or executables. While the documentation for Lake describes the
available options in a lakefile, it makes use of a number of Lean features that have not yet
been described here. The generated lakefile.lean  contains the following:

This initial Lakefile consists of three items:

a package declaration, named greeting ,
a library declaration, named Greeting , and
an executable, also named greeting .

Each of these names is enclosed in guillemets to allow users more freedom in picking
package names.

import «Greeting»

def main : IO Unit :=
  IO.println s!"Hello, {hello}!"

import Lake
open Lake DSL

package «greeting» {
  -- add package configuration options here
}

lean_lib «Greeting» {
  -- add library configuration options here
}

@[default_target]
lean_exe «greeting» {
  root := `Main
}
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Each Lakefile will contain exactly one package, but any number of libraries or executables.
Additionally, Lakefiles may contain external libraries, which are libraries not written in Lean
to be statically linked with the resulting executable, custom targets, which are build targets
that don't fit naturally into the library/executable taxonomy, dependencies, which are
declarations of other Lean packages (either locally or from remote Git repositories), and
scripts, which are essentially IO  actions (similar to main ), but that additionally have access
to metadata about the package configuration. The items in the Lakefile allow things like
source file locations, module hierarchies, and compiler flags to be configured. Generally
speaking, however, the defaults are reasonable.

Libraries, executables, and custom targets are all called targets. By default, lake build
builds those targets that are annotated with @[default_target] . This annotation is an
attribute, which is metadata that can be associated with a Lean declaration. Attributes are
similar to Java annotations or C# and Rust attributes. They are used pervasively throughout
Lean. To build a target that is not annotated with @[default_target] , specify the target's
name as an argument after lake build .

Libraries and Imports

A Lean library consists of a hierarchically organized collection of source files from which
names can be imported, called modules. By default, a library has a single root file that
matches its name. In this case, the root file for the library Greeting  is Greeting.lean . The
first line of Main.lean , which is import Greeting , makes the contents of Greeting.lean
available in Main.lean .

Additional module files may be added to the library by creating a directory called Greeting
and placing them inside. These names can be imported by replacing the directory separator
with a dot. For instance, creating the file Greeting/Smile.lean  with the contents:

means that Main.lean  can use the definition as follows:

The module name hierarchy is decoupled from the namespace hierarchy. In Lean, modules
are units of code distribution, while namespaces are units of code organization. That is,
names defined in the module Greeting.Smile  are not automatically in a corresponding
namespace Greeting.Smile . Modules may place names into any namespace they like, and
the code that imports them may open  the namespace or not. import  is used to make the

def expression : String := "a big smile"

import Greeting
import Greeting.Smile

def main : IO Unit :=
  IO.println s!"Hello, {hello}, with {expression}!"
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contents of a source file available, while open  makes names from a namespace available in
the current context without prefixes. In the Lakefile, the line import Lake  makes the
contents of the Lake  module available, while the line open Lake DSL  makes the contents
of the Lake  and Lake.DSL  namespaces available without any prefixes. Lake.DSL  is opened
because opening Lake  makes Lake.DSL  available as just DSL , just like all other names in
the Lake  namespace. The Lake  module places names into both the Lake  and Lake.DSL
namespaces.

Namespaces may also be opened selectively, making only some of their names available
without explicit prefixes. This is done by writing the desired names in parentheses. For
example, Nat.toFloat  converts a natural number to a Float . It can be made available as
toFloat  using open Nat (toFloat) .
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Worked Example: cat
The standard Unix utility cat  takes a number of command-line options, followed by zero or
more input files. If no files are provided, or if one of them is a dash ( - ), then it takes the
standard input as the corresponding input instead of reading a file. The contents of the
inputs are written, one after the other, to the standard output. If a specified input file does
not exist, this is noted on standard error, but cat  continues concatenating the remaining
inputs. A non-zero exit code is returned if any of the input files do not exist.

This section describes a simplified version of cat , called feline . Unlike commonly-used
versions of cat , feline  has no command-line options for features such as numbering
lines, indicating non-printing characters, or displaying help text. Furthermore, it cannot read
more than once from a standard input that's associated with a terminal device.

To get the most benefit from this section, follow along yourself. It's OK to copy-paste the
code examples, but it's even better to type them in by hand. This makes it easier to learn
the mechanical process of typing in code, recovering from mistakes, and interpreting
feedback from the compiler.

Getting started

The first step in implementing feline  is to create a package and decide how to organize
the code. In this case, because the program is so simple, all the code will be placed in
Main.lean . The first step is to run lake new feline . Edit the Lakefile to remove the library,

and delete the generated library code and the reference to it from Main.lean . Once this
has been done, lakefile.lean  should contain:

and Main.lean  should contain something like:

import Lake
open Lake DSL

package «feline» {
  -- add package configuration options here
}

@[default_target]
lean_exe «feline» {
  root := `Main
}

def main : IO Unit :=
  IO.println s!"Hello, cats!"
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Alternatively, running lake new feline exe  instructs lake  to use a template that does not
include a library section, making it unnecessary to edit the file.

Ensure that the code can be built by running lake build .

Concatenating Streams

Now that the basic skeleton of the program has been built, it's time to actually enter the
code. A proper implementation of cat  can be used with infinite IO streams, such as
/dev/random , which means that it can't read its input into memory before outputting it.

Furthermore, it should not work one character at a time, as this leads to frustratingly slow
performance. Instead, it's better to read contiguous blocks of data all at once, directing the
data to the standard output one block at a time.

The first step is to decide how big of a block to read. For the sake of simplicity, this
implementation uses a conservative 20 kilobyte block. USize  is analogous to size_t  in C—
it's an unsigned integer type that is big enough to represent all valid array sizes.

Streams

The main work of feline  is done by dump , which reads input one block at a time, dumping
the result to standard output, until the end of the input has been reached:

The dump  function is declared partial , because it calls itself recursively on input that is not
immediately smaller than an argument. When a function is declared to be partial, Lean does
not require a proof that it terminates. On the other hand, partial functions are also much
less amenable to proofs of correctness, because allowing infinite loops in Lean's logic would
make it unsound. However, there is no way to prove that dump  terminates, because infinite
input (such as from /dev/random ) would mean that it does not, in fact, terminate. In cases
like this, there is no alternative to declaring the function partial .

The type IO.FS.Stream  represents a POSIX stream. Behind the scenes, it is represented as
a structure that has one field for each POSIX stream operation. Each operation is

def bufsize : USize := 20 * 1024

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    let stdout ← IO.getStdout
    stdout.write buf
    dump stream
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represented as an IO action that provides the corresponding operation:

The Lean compiler contains IO  actions (such as IO.getStdout , which is called in dump ) to
get streams that represent standard input, standard output, and standard error. These are
IO  actions rather than ordinary definitions because Lean allows these standard POSIX

streams to be replaced in a process, which makes it easier to do things like capturing the
output from a program into a string by writing a custom IO.FS.Stream .

The control flow in dump  is essentially a while  loop. When dump  is called, if the stream has
reached the end of the file, pure ()  terminates the function by returning the constructor
for Unit . If the stream has not yet reached the end of the file, one block is read, and its
contents are written to stdout , after which dump  calls itself directly. The recursive calls
continue until stream.read  returns an empty byte array, which indicates that the end of the
file has been reached.

When an if  expression occurs as a statement in a do , as in dump , each branch of the if
is implicitly provided with a do . In other words, the sequence of steps following the else
are treated as a sequence of IO  actions to be executed, just as if they had a do  at the
beginning. Names introduced with let  in the branches of the if  are visible only in their
own branches, and are not in scope outside of the if .

There is no danger of running out of stack space while calling dump  because the recursive
call happens as the very last step in the function, and its result is returned directly rather
than being manipulated or computed with. This kind of recursion is called tail recursion, and
it is described in more detail later in this book. Because the compiled code does not need to
retain any state, the Lean compiler can compile the recursive call to a jump.

If feline  only redirected standard input to standard output, then dump  would be
sufficient. However, it also needs to be able to open files that are provided as command-line
arguments and emit their contents. When its argument is the name of a file that exists,
fileStream  returns a stream that reads the file's contents. When the argument is not a file,
fileStream  emits an error and returns none .

structure Stream where
  flush   : IO Unit
  read    : USize → IO ByteArray
  write   : ByteArray → IO Unit
  getLine : IO String
  putStr  : String → IO Unit



02/06/2023, 22:33 Functional Programming in Lean

https://leanprover.github.io/functional_programming_in_lean/print.html 82/432

Opening a file as a stream takes two steps. First, a file handle is created by opening the file
in read mode. A Lean file handle tracks an underlying file descriptor. When there are no
references to the file handle value, a finalizer closes the file descriptor. Second, the file
handle is given the same interface as a POSIX stream using IO.FS.Stream.ofHandle , which
fills each field of the Stream  structure with the corresponding IO  action that works on file
handles.

Handling Input

The main loop of feline  is another tail-recursive function, called process . In order to
return a non-zero exit code if any of the inputs could not be read, process  takes an
argument exitCode  that represents the current exit code for the whole program.
Additionally, it takes a list of input files to be processed.

Just as with if , each branch of a match  that is used as a statement in a do  is implicitly
provided with its own do .

There are three possibilities. One is that no more files remain to be processed, in which case
process  returns the error code unchanged. Another is that the specified filename is "-" ,

in which case process  dumps the contents of the standard input and then processes the
remaining filenames. The final possibility is that an actual filename was specified. In this
case, fileStream  is used to attempt to open the file as a POSIX stream. Its argument is
encased in ⟨ ... ⟩  because a FilePath  is a single-field structure that contains a string. If

def fileStream (filename : System.FilePath) : IO (Option IO.FS.Stream) := do
  let fileExists ← filename.pathExists
  if not fileExists then
    let stderr ← IO.getStderr
    stderr.putStrLn s!"File not found: {filename}"
    pure none
  else
    let handle ← IO.FS.Handle.mk filename IO.FS.Mode.read
    pure (some (IO.FS.Stream.ofHandle handle))

def process (exitCode : UInt32) (args : List String) : IO UInt32 := do
  match args with
  | [] => pure exitCode
  | "-" :: args =>
    let stdin ← IO.getStdin
    dump stdin
    process exitCode args
  | filename :: args =>
    let stream ← fileStream ⟨filename⟩
    match stream with
    | none =>
      process 1 args
    | some stream =>
      dump stream
      process exitCode args
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the file could not be opened, it is skipped, and the recursive call to process  sets the exit
code to 1 . If it could, then it is dumped, and the recursive call to process  leaves the exit
code unchanged.

process  does not need to be marked partial  because it is structurally recursive. Each
recursive call is provided with the tail of the input list, and all Lean lists are finite. Thus,
process  does not introduce any non-termination.

Main

The final step is to write the main  action. Unlike prior examples, main  in feline  is a
function. In Lean, main  can have one of three types:

main : IO Unit  corresponds to programs that cannot read their command-line
arguments and always indicate success with an exit code of 0 ,
main : IO UInt32  corresponds to int main(void)  in C, for programs without

arguments that return exit codes, and
main : List String → IO UInt32  corresponds to int main(int argc, char 
**argv)  in C, for programs that take arguments and signal success or failure.

If no arguments were provided, feline  should read from standard input as if it were called
with a single "-"  argument. Otherwise, the arguments should be processed one after the
other.

Meow!

To check whether feline  works, the first step is to build it with lake build . First off, when
called without arguments, it should emit what it receives from standard input. Check that

emits It works! .

Secondly, when called with files as arguments, it should print them. If the file test1.txt
contains

def main (args : List String) : IO UInt32 :=
  match args with
  | [] => process 0 ["-"]
  | _ =>  process 0 args

echo "It works!" | ./build/bin/feline

It's time to find a warm spot
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and test2.txt  contains

then the command

should emit

Finally, the -  argument should be handled appropriately.

should yield

Exercise

Extend feline  with support for usage information. The extended version should accept a
command-line argument --help  that causes documentation about the available command-
line options to be written to standard output.

and curl up!

./build/bin/feline test1.txt test2.txt

It's time to find a warm spot
and curl up!

echo "and purr" | ./build/bin/feline test1.txt - test2.txt

It's time to find a warm spot
and purr
and curl up!
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Additional Conveniences

Nested Actions

Many of the functions in feline  exhibit a repetitive pattern in which an IO  action's result
is given a name, and then used immediately and only once. For instance, in dump :

the pattern occurs for stdout :

Similarly, fileStream  contains the following snippet:

When Lean is compiling a do  block, expressions that consist of a left arrow immediately
under parentheses are lifted to the nearest enclosing do , and their results are bound to a
unique name. This unique name replaces the origin of the expression. This means that
dump  can also be written as follows:

This version of dump  avoids introducing names that are used only once, which can greatly
simplify a program. IO  actions that Lean lifts from a nested expression context are called
nested actions.

fileStream  can be simplified using the same technique:

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    let stdout ← IO.getStdout
    stdout.write buf
    dump stream

    let stdout ← IO.getStdout
    stdout.write buf

  let fileExists ← filename.pathExists
  if not fileExists then

partial def dump (stream : IO.FS.Stream) : IO Unit := do
  let buf ← stream.read bufsize
  if buf.isEmpty then
    pure ()
  else
    (← IO.getStdout).write buf
    dump stream
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In this case, the local name of handle  could also have been eliminated using nested
actions, but the resulting expression would have been long and complicated. Even though
it's often good style to use nested actions, it can still sometimes be helpful to name
intermediate results.

It is important to remember, however, that nested actions are only a shorter notation for
IO  actions that occur in a surrounding do  block. The side effects that are involved in

executing them still occur in the same order, and execution of side effects is not
interspersed with the evaluation of expressions. For an example of where this might be
confusing, consider the following helper definitions that return data after announcing to the
world that they have been executed:

These definitions are intended to stand in for more complicated IO  code that might
validate user input, read a database, or open a file.

A program that prints 0  when number A is five, or number B  otherwise, can be written as
follows:

However, this program probably has more side effects (such as prompting for user input or
reading a database) than was intended. The definition of getNumA  makes it clear that it will
always return 5 , and thus the program should not read number B. However, running the
program results in the following output:

getNumB  was executed because test  is equivalent to this definition:

def fileStream (filename : System.FilePath) : IO (Option IO.FS.Stream) := do
  if not (← filename.pathExists) then
    (← IO.getStderr).putStrLn s!"File not found: {filename}"
    pure none
  else
    let handle ← IO.FS.Handle.mk filename IO.FS.Mode.read
    pure (some (IO.FS.Stream.ofHandle handle))

def getNumA : IO Nat := do
  (← IO.getStdout).putStrLn "A"
  pure 5

def getNumB : IO Nat := do
  (← IO.getStdout).putStrLn "B"
  pure 7

def test : IO Unit := do
  let a : Nat := if (← getNumA) == 5 then 0 else (← getNumB)
  (← IO.getStdout).putStrLn s!"The answer is {a}"

A
B
The answer is 0
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This is due to the rule that nested actions are lifted to the closest enclosing do  block. The
branches of the if  were not implicitly wrapped in do  blocks because the if  is not itself a
statement in the do  block—the statement is the let  that defines a . Indeed, they could
not be wrapped this way, because the type of the conditional expression is Nat , not IO 
Nat .

Flexible Layouts for do

In Lean, do  expressions are whitespace-sensitive. Each IO  action or local binding in the do
is expected to start on its own line, and they should all have the same indentation. Almost
all uses of do  should be written this way. In some rare contexts, however, manual control
over whitespace and indentation may be necessary, or it may be convenient to have
multiple small actions on a single line. In these cases, newlines can be replaced with a
semicolon and indentation can be replaced with curly braces.

For instance, all of the following programs are equivalent:

def test : IO Unit := do
  let x ← getNumA
  let y ← getNumB
  let a : Nat := if x == 5 then 0 else y
  (← IO.getStdout).putStrLn s!"The answer is {a}"
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Idiomatic Lean code uses curly braces with do  very rarely.

Running IO Actions With #eval

Lean's #eval  command can be used to execute IO  actions, rather than just evaluating
them. Normally, adding a #eval  command to a Lean file causes Lean to evaluate the
provided expression, convert the resulting value to a string, and provide that string as a
tooltip and in the info window. Rather than failing because IO  actions can't be converted to
strings, #eval  executes them, carrying out their side effects. If the result of execution is the
Unit  value () , then no result string is shown, but if it is a type that can be converted to a

string, then Lean displays the resulting value.

This means that, given the prior definitions of countdown  and runActions ,

displays

-- This version uses only whitespace-sensitive layout
def main : IO Unit := do
  let stdin ← IO.getStdin
  let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let name := (← stdin.getLine).trim
  stdout.putStrLn s!"Hello, {name}!"

-- This version is as explicit as possible
def main : IO Unit := do {
  let stdin ← IO.getStdin;
  let stdout ← IO.getStdout;

  stdout.putStrLn "How would you like to be addressed?";
  let name := (← stdin.getLine).trim;
  stdout.putStrLn s!"Hello, {name}!"
}

-- This version uses a semicolon to put two actions on the same line
def main : IO Unit := do
  let stdin ← IO.getStdin; let stdout ← IO.getStdout

  stdout.putStrLn "How would you like to be addressed?"
  let name := (← stdin.getLine).trim
  stdout.putStrLn s!"Hello, {name}!"

#eval runActions (countdown 3)

3
2
1
Blast off!
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This is the output produced by running the IO  action, rather than some opaque
representation of the action itself. In other words, for IO  actions, #eval  both evaluates the
provided expression and executes the resulting action value.

Quickly testing IO  actions with #eval  can be much more convenient that compiling and
running whole programs. However, there are some limitations. For instance, reading from
standard input simply returns empty input. Additionally, the IO  action is re-executed
whenever Lean needs to update the diagnostic information that it provides to users, and
this can happen at unpredictable times. An action that reads and writes files, for instance,
may do so at inconvenient times.
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Summary

Evaluation vs Execution

Side effects are aspects of program execution that go beyond the evaluation of
mathematical expressions, such as reading files, throwing exceptions, or triggering
industrial machinery. While most languages allow side effects to occur during evaluation,
Lean does not. Instead, Lean has a type called IO  that represents descriptions of programs
that use side effects. These descriptions are then executed by the language's run-time
system, which invokes the Lean expression evaluator to carry out specific computations.
Values of type IO α  are called IO  actions. The simplest is pure , which returns its argument
and has no actual side effects.

IO  actions can also be understood as functions that take the whole world as an argument
and return a new world in which the side effect has occurred. Behind the scenes, the IO
library ensures that the world is never duplicated, created, or destroyed. While this model of
side effects cannot actually be implemented, as the whole universe is too big to fit in
memory, the real world can be represented by a token that is passed around through the
program.

An IO  action main  is executed when the program starts. main  can have one of three
types:

main : IO Unit  is used for simple programs that cannot read their command-line
arguments and always return exit code 0 ,
main : IO UInt32  is used for programs without arguments that may signal success or

failure, and
main : List String → IO UInt32  is used for programs that take command-line

arguments and signal success or failure.

do Notation

The Lean standard library provides a number of basic IO  actions that represent effects
such as reading from and writing to files and interacting with standard input and standard
output. These base IO  actions are composed into larger IO  actions using do  notation,
which is a built-in domain-specific language for writing descriptions of programs with side
effects. A do  expression contains a sequence of statements, which may be:

expressions that represent IO  actions,
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ordinary local definitions with let  and := , where the defined name refers to the
value of the provided expression, or
local definitions with let  and ← , where the defined name refers to the result of
executing the value of the provided expression.

IO  actions that are written with do  are executed one statement at a time.

Furthermore, if  and match  expressions that occur immediately under a do  are implicitly
considered to have their own do  in each branch. Inside of a do  expression, nested actions
are expressions with a left arrow immediately under parentheses. The Lean compiler
implicitly lifts them to the nearest enclosing do , which may be implicitly part of a branch of
a match  or if  expression, and gives them a unique name. This unique name then replaces
the origin site of the nested action.

Compiling and Running Programs

A Lean program that consists of a single file with a main  definition can be run using lean -
-run FILE . While this can be a nice way to get started with a simple program, most
programs will eventually graduate to a multiple-file project that should be compiled before
running.

Lean projects are organized into packages, which are collections of libraries and executables
together with information about dependencies and a build configuration. Packages are
described using Lake, a Lean build tool. Use lake new  to create a Lake package in a new
directory, or lake init  to create one in the current directory. Lake package configuration
is another domain-specific language. Use lake build  to build a project.

Partiality

One consequence of following the mathematical model of expression evaluation is that
every expression must have a value. This rules out both incomplete pattern matches that
fail to cover all constructors of a datatype and programs that can fall into an infinite loop.
Lean ensures that all match  expressions cover all cases, and that all recursive functions are
either structurally recursive or have an explicit proof of termination.

However, some real programs require the possibility of looping infinitely, because they
handle potentially-infinite data, such as POSIX streams. Lean provides an escape hatch:
functions whose definition is marked partial  are not required to terminate. This comes at
a cost. Because types are a first-class part of the Lean language, functions can return types.
Partial functions, however, are not evaluated during type checking, because an infinite loop
in a function could cause the type checker to enter an infinite loop. Furthermore,
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mathematical proofs are unable to inspect the definitions of partial functions, which means
that programs that use them are much less amenable to formal proof.
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Interlude: Propositions, Proofs, and
Indexing
Like many languages, Lean uses square brackets for indexing into arrays and lists. For
instance, if woodlandCritters  is defined as follows:

then the individual components can be extracted:

However, attempting to extract the fourth element results in a compile-time error, rather
than a run-time error:

This error message is saying Lean tried to automatically mathematically prove that 3 < 
List.length woodlandCritters , which would mean that the lookup was safe, but that it
could not do so. Out-of-bounds errors are a common class of bugs, and Lean uses its dual
nature as a programming language and a theorem prover to rule out as many as possible.

Understanding how this works requires an understanding of three key ideas: propositions,
proofs, and tactics.

Propositions and Proofs

A proposition is a statement that can be true or false. All of the following are propositions:

1 + 1 = 2
Addition is commutative
There are infinitely many prime numbers

def woodlandCritters : List String :=
  ["hedgehog", "deer", "snail"]

def hedgehog := woodlandCritters[0]
def deer := woodlandCritters[1]
def snail := woodlandCritters[2]

def oops := woodlandCritters[3]

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
⊢ 3 < List.length woodlandCritters
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1 + 1 = 15
Paris is the capital of France
Buenos Aires is the capital of South Korea
All birds can fly

On the other hand, nonsense statements are not propositions. None of the following are
propositions:

1 + green = ice cream
All capital cities are prime numbers
At least one gorg is a fleep

Propositions come in two varieties: those that are purely mathematical, relying only on our
definitions of concepts, and those that are facts about the world. Theorem provers like Lean
are concerned with the former category, and have nothing to say about the flight
capabilities of penguins or the legal status of cities.

A proof is a convincing argument that a proposition is true. For mathematical propositions,
these arguments make use of the definitions of the concepts that are involved as well as the
rules of logical argumentation. Most proofs are written for people to understand, and leave
out many tedious details. Computer-aided theorem provers like Lean are designed to allow
mathematicians to write proofs while omitting many details, and it is the software's
responsibility to fill in the missing explicit steps. This decreases the likelihood of oversights
or mistakes.

In Lean, a program's type describes the ways it can be interacted with. For instance, a
program of type Nat → List String  is a function that takes a Nat  argument and produces
a list of strings. In other words, each type specifies what counts as a program with that type.

In Lean, propositions are in fact types. They specify what counts as evidence that the
statement is true. The proposition is proved by providing this evidence. On the other hand,
if the proposition is false, then it will be impossible to construct this evidence.

For example, the proposition "1 + 1 = 2" can be written directly in Lean. The evidence for this
proposition is the constructor rfl , which is short for reflexivity:

On the other hand, rfl  does not prove the false proposition "1 + 1 = 15":

def onePlusOneIsTwo : 1 + 1 = 2 := rfl

def onePlusOneIsFifteen : 1 + 1 = 15 := rfl
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This error message indicates that rfl  can prove that two expressions are equal when both
sides of the equality statement are already the same number. Because 1 + 1  evaluates
directly to 2 , they are considered to be the same, which allows onePlusOneIsTwo  to be
accepted. Just as Type  describes types such as Nat , String , and List (Nat × String × 
(Int → Float))  that represent data structures and functions, Prop  describes propositions.

When a proposition has been proven, it is called a theorem. In Lean, it is conventional to
declare theorems with the theorem  keyword instead of def . This helps readers see which
declarations are intended to be read as mathematical proofs, and which are definitions.
Generally speaking, with a proof, what matters is that there is evidence that a proposition is
true, but it's not particularly important which evidence was provided. With definitions, on
the other hand, it matters very much which particular value is selected—after all, a
definition of addition that always returns 0  is clearly wrong.

The prior example could be rewritten as follows:

Tactics

Proofs are normally written using tactics, rather than by providing evidence directly. Tactics
are small programs that construct evidence for a proposition. These programs run in a proof
state that tracks the statement that is to be proved (called the goal) along with the
assumptions that are available to prove it. Running a tactic on a goal results in a new proof
state that contains new goals. The proof is complete when all goals have been proven.

To write a proof with tactics, begin the definition with by . Writing by  puts Lean into tactic
mode until the end of the next indented block. While in tactic mode, Lean provides ongoing
feedback about the current proof state. Written with tactics, onePlusOneIsTwo  is still quite
short:

The simp  tactic, short for "simplify", is the workhorse of Lean proofs. It rewrites the goal to
as simple a form as possible, taking care of parts of the proof that are small enough. In

type mismatch
  rfl
has type
  1 + 1 = 1 + 1 : Prop
but is expected to have type
  1 + 1 = 15 : Prop

def OnePlusOneIsTwo : Prop := 1 + 1 = 2

theorem onePlusOneIsTwo : OnePlusOneIsTwo := rfl

theorem onePlusOneIsTwo : 1 + 1 = 2 := by
  simp
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particular, it proves simple equality statements. Behind the scenes, a detailed formal proof
is constructed, but using simp  hides this complexity.

Tactics are useful for a number of reasons:

1. Many proofs are complicated and tedious when written out down to the smallest
detail, and tactics can automate these uninteresting parts.

2. Proofs written with tactics are easier to maintain over time, because flexible
automation can paper over small changes to definitions.

3. Because a single tactic can prove many different theorems, Lean can use tactics
behind the scenes to free users from writing proofs by hand. For instance, an array
lookup requires a proof that the index is in bounds, and a tactic can typically construct
that proof without the user needing to worry about it.

Behind the scenes, indexing notation uses a tactic to prove that the user's lookup operation
is safe. This tactic is simp , configured to take certain arithmetic identities into account.

Connectives

The basic building blocks of logic, such as "and", "or", "true", "false", and "not", are called
logical connectives. Each connective defines what counts as evidence of its truth. For
example, to prove a statement "A and B", one must prove both A and B. This means that
evidence for "A and B" is a pair that contains both evidence for A and evidence for B.
Similarly, evidence for "A or B" consists of either evidence for A or evidence for B.

In particular, most of these connectives are defined like datatypes, and they have
constructors. If A  and B  are propositions, then " A  and B " (written A ∧ B ) is a
proposition. Evidence for A ∧ B  consists of the constructor And.intro , which has the type
A → B → A ∧ B . Replacing A  and B  with concrete propositions, it is possible to prove 1 + 
1 = 2 ∧ "Str".append "ing" = "String"  with And.intro rfl rfl . Of course, simp  is
also powerful enough to find this proof:

Similarly, " A  or B " (written A ∨ B ) has two constructors, because a proof of " A  or B "
requires only that one of the two underlying propositions be true. There are two
constructors: Or.inl , with type A → A ∨ B , and Or.inr , with type B → A ∨ B .

Implication (if A then B) is represented using functions. In particular, a function that
transforms evidence for A into evidence for B is itself evidence that A implies B. This is
different from the usual description of implication, in which A → B  is shorthand for ¬A ∨ B ,
but the two formulations are equivalent.

theorem addAndAppend : 1 + 1 = 2 ∧ "Str".append "ing" = "String" := by simp
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Because evidence for an "and" is a constructor, it can be used with pattern matching. For
instance, a proof that A and B implies A or B is a function that pulls the evidence of A (or of B)
out of the evidence for A and B, and then uses this evidence to produce evidence of A or B:

Connective
Lean

Syntax
Evidence

True True True.intro : True

False False No evidence

A and B A ∧ B And.intro : A → B → A ∧ B

A or B A ∨ B
Either Or.inl : A → A ∨ B  or Or.inr : B → A ∨ 
B

A implies B A → B
A function that transforms evidence of A into
evidence of B

not A ¬A
A function that would transform evidence of A into
evidence of False

The simp  tactic can prove theorems that use these connectives. For example:

Evidence as Arguments

While simp  does a great job proving propositions that involve equalities and inequalities of
specific numbers, it is not very good at proving statements that involve variables. For
instance, simp  can prove that 4 < 15 , but it can't easily tell that because x < 4 , it's also
true that x < 15 . Because index notation uses simp  behind the scenes to prove that array
access is safe, it can require a bit of hand-holding.

One of the easiest ways to make indexing notation work well is to have the function that
performs a lookup into a data structure take the required evidence of safety as an
argument. For instance, a function that returns the third entry in a list is not generally safe
because lists might contain zero, one, or two entries:

theorem andImpliesOr : A ∧ B → A ∨ B :=
  fun andEvidence =>
    match andEvidence with
    | And.intro a b => Or.inl a

theorem onePlusOneAndLessThan : 1 + 1 = 2 ∨ 3 < 5 := by simp
theorem notTwoEqualFive : ¬(1 + 1 = 5) := by simp
theorem trueIsTrue : True := True.intro
theorem trueOrFalse : True ∨ False := by simp
theorem falseImpliesTrue : False → True := by simp

def third (xs : List α) : α := xs[2]
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However, the obligation to show that the list has at least three entries can be imposed on
the caller by adding an argument that consists of evidence that the indexing operation is
safe:

In this example, xs.length > 2  is not a program that checks whether xs  has more than 2
entries. It is a proposition that could be true or false, and the argument ok  must be
evidence that it is true.

When the function is called on a concrete list, its length is known. In these cases, by simp
can construct the evidence automatically:

Indexing Without Evidence

In cases where it's not practical to prove that an indexing operation is in bounds, there are
other alternatives. Adding a question mark results in an Option , where the result is some  if
the index is in bounds, and none  otherwise. For example:

There is also a version that crashes the program when the index is out of bounds, rather
than returning an Option :

failed to prove index is valid, possible solutions:
  - Use `have`-expressions to prove the index is valid
  - Use `a[i]!` notation instead, runtime check is perfomed, and 'Panic' error 
message is produced if index is not valid
  - Use `a[i]?` notation instead, result is an `Option` type
  - Use `a[i]'h` notation instead, where `h` is a proof that index is valid
α : Type ?u.3900
xs : List α
⊢ 2 < List.length xs

def third (xs : List α) (ok : xs.length > 2) : α := xs[2]

#eval third woodlandCritters (by simp)

"snail"

def thirdOption (xs : List α) : Option α := xs[2]?

#eval thirdOption woodlandCritters

some "snail"

#eval thirdOption ["only", "two"]

none
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Be careful! Because code that is run with #eval  runs in the context of the Lean compiler,
selecting the wrong index can crash your IDE.

Messages You May Meet

In addition to the error that occurs when Lean is unable to find compile-time evidence that
an indexing operation is safe, polymorphic functions that use unsafe indexing may produce
the following message:

This is due to a technical restriction that is part of keeping Lean usable as both a logic for
proving theorems and a programming language. In particular, only programs whose types
contain at least one value are allowed to crash. This is because a proposition in Lean is a
kind of type that classifies evidence of its truth. False propositions have no such evidence. If
a program with an empty type could crash, then that crashing program could be used as a
kind of fake evidence for a false proposition.

Internally, Lean contains a table of types that are known to have at least one value. This
error is saying that some arbitrary type α  is not necessarily in that table. The next chapter
describes how to add to this table, and how to successfully write functions like
unsafeThird .

Adding whitespace between a list and the brackets used for lookup can cause another
message:

Adding a space causes Lean to treat the expression as a function application, and the index
as a list that contains a single number. This error message results from having Lean attempt
to treat woodlandCritters  as a function.

#eval woodlandCritters[1]!

"deer"

def unsafeThird (xs : List α) : α := xs[2]!

failed to synthesize instance
  Inhabited α

#eval woodlandCritters [1]

function expected at
  woodlandCritters
term has type
  List String
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Exercises

Prove the following theorems using rfl : 2 + 3 = 5 , 15 - 8 = 7 , "Hello, ".append 
"world" = "Hello, world" . What happens if rfl  is used to prove 5 < 18 ? Why?
Prove the following theorems using by simp : 2 + 3 = 5 , 15 - 8 = 7 , "Hello, 
".append "world" = "Hello, world" , 5 < 18 .
Write a function that looks up the fifth entry in a list. Pass the evidence that this lookup
is safe as an argument to the function.


