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Figure 4.1.1: DemonstraƟng the geo-
metric concept behindNewton’sMethod.
Note how x3 is very close to a soluƟon to
f(x) = 0.

4: AÖÖ½®��ã®ÊÄÝ Ê¥ ã«�
D�Ù®ò�ã®ò�

In Chapter 3, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

4.1 Newton’s Method
Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon 1.5 we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will oŌen converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equaƟon of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equaƟon:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approximaƟon is beƩer than it ac-
tually is. These issues will be discussed at
the end of the secƟon.

Chapter 4 ApplicaƟons of the DerivaƟve

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differenƟable funcƟon on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

2. Create successive approximaƟons iteraƟvely; given an approxima-
Ɵon xn, compute the next approximaƟon xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Let’s pracƟce Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the

Notes:
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4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iteraƟons of Newton’s Method to find a root accurate to the
first 3 places aŌer the decimal; our final approximaƟon is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
iniƟal approximaƟon of x0 = 1 was not parƟcularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of iniƟal calculaƟon,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate iniƟal approximaƟon.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵmewepress the Enter key, we are finding the successive approximaƟons,
x1, x2, …, and each one is geƫng closer to the root. In fact, once we get past
around x7 or so, the approximaƟons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
preƩy confident that we have found an accurate approximaƟon.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

Notes:
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Example 4.1.2 Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to 5
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starƟng value, x0. Consider Figure 4.1.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is preƩy close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpuƫng
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximaƟons. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximaƟons x2 and x3 did not differ for at least the first 5 places aŌer the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interesƟng to see how we
found an approximaƟon, accurate to as many decimal places as our calculator
displays, in just 4 iteraƟons.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computaƟon in this problem.

Notes:
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Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

4.1 Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approximaƟon is stored in the variable oldx. We conƟnue looping unƟl
the difference between two successive approximaƟons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the iniƟal guess, x0? Generally, the closer to the
actual root the iniƟal guess is, the beƩer. However, some iniƟal guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a parƟcularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

AdjusƟng the iniƟal approximaƟon x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximaƟon is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.1.5(a) shows graphically the calculaƟon of x1; noƟce how it is farther from the
root than x0. Figures 4.1.5(b) and (c) show the calculaƟon of x2 and x3, which are
even farther away; our successive approximaƟons are geƫng worse. (It turns
out that in this parƟcular example, each successive approximaƟon is twice as far
from the true answer as the previous approximaƟon.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

Newton’s Method can as much as double the number of correct decimal places
with each successive approximaƟon. A course in Numerical Analysis will intro-
duce the reader to more iteraƟve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:
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Exercises 4.1
Terms and Concepts
1. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = 0.

2. T/F: In order to get a soluƟon to f(x) = 0 accurate to d
places aŌer the decimal, at least d + 1 iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 8, the roots of f(x) are known or are easily
found. Use 5 iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9 – 12, use Newton’s Method to approximate all
roots of the given funcƟons accurate to 3 places aŌer the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good iniƟal approx-
imaƟons.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13 – 16, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good iniƟal approx-
imaƟons.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This secƟon relies heavily on im-
plicit differenƟaƟon, so referring back to
SecƟon 2.6 may help.

Chapter 4 ApplicaƟons of the DerivaƟve

4.2 Related Rates
When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6πin determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quanƟty is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
2πr. We are given informaƟon about how the length of r changes with respect
to Ɵme; that is, we are told dr

dt = 5in/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dC

dt .
Implicitly differenƟate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π ≈ 31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:
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SÊ½çã®ÊÄ

1. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16in2/s.

2. To start, we need an equaƟon that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informaƟon.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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Figure 4.2.1: A sketch of a police car
(at boƩom) aƩempƟng to measure the
speed of a car (at right) in Example 4.2.3.
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circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle is dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25in/s.

Example 4.2.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersecƟon of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.2.1, let’s label what we know
about the situaƟon. As both the police officer and other driver are 1/2mile from
the intersecƟon, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 30mph; that is, dA
dt = −30. The

reason this rate of change is negaƟve is that A is geƫng smaller; the distance
between the officer and the intersecƟon is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

We need an equaƟon that relatesB toA and/or C. The Pythagorean Theorem

Notes:
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Note: Example 4.2.3 is both interesƟng
and impracƟcal. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.

..

θ

.

10Ō

.
x

.
100mph

Figure 4.2.2: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

4.2 Related Rates

is a good choice: A2 + B2 = C2. DifferenƟate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates
A camera is placed on a tripod 10Ō from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure 4.2.2 suggests we use a trigonometric equaƟon. Leƫng x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = −100mph (as in the last example,

since x is geƫng smaller as the car travels, dx
dt is negaƟve). We need to convert

the measurements so they use the same units; rewrite −100mph in terms of
Ō/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280 Ō
m

· 1
3600

hr
s

= −146.6Ō/s.

Now take the derivaƟve of both sides of EquaƟon (4.1) using implicit differenƟ-

Notes:
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aƟon:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
maƟcs bears this out. In EquaƟon (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67Ō/s, we have

dθ
dt

= −1rad
10Ō

146.67Ō/s = −14.667radians/s.

We find that dθ
dt is negaƟve; this matches our diagram in Figure 4.2.2 for θ is

geƫng smaller as the car approaches the camera.
What is the pracƟcal meaning of −14.667radians/s? Recall that 1 circular

revoluƟon goes through 2π radians, thus 14.667rad/s means 14.667/(2π) ≈
2.33 revoluƟons per second. The negaƟve sign indicates the camera is rotaƟng
in a clockwise fashion.

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent
lines of funcƟons. This chapter emphasizes using the derivaƟve in other ways.
Newton’s Method uses the derivaƟve to approximate roots of funcƟons; this
secƟon stresses the “rate of change” aspect of the derivaƟve to find a relaƟon-
ship between the rates of change of two related quanƟƟes.

In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differenƟaƟon is oŌen used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situaƟon introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2mile from the intersecƟon, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is−80mph?

6. Consider the traffic situaƟon introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situaƟons.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersecƟon, while the other car
is 1 mile from the intersecƟon traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersecƟon, while the other car is
1/2 mile from the intersecƟon traveling west and the
radar reading is−80mph?

7. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
10,000Ō on a straight–line path thatwill take it directly over
an anƟ–aircraŌ gun.

.

.
.

. θ.

x

.
10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
100Ō on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise 7 (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24Ō. ladder is leaning against a house while the base is
pulled away at a constant rate of 1Ō/s.

.
.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30Ō/min by a winch located 10Ō above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20Ō deep and 10Ō across at
the top, is being filled with water at a rate of 10Ō3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starƟng at empty?
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12. A rope, aƩached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 Ō) and begins to walk away at a rate
of 2Ō/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situaƟon described in Exercise 12. Suppose
the man starts 40Ō from the weight and begins to walk
away at a rate of 2Ō/s.

(a) How long is the rope?

(b) How fast is theweight rising aŌer theman haswalked
10 feet?

(c) How fast is theweight rising aŌer theman haswalked
30 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon liŌs off from ground rising verƟcally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5Ō3/sec; the physical properƟes of the sand, in conjunc-
Ɵon with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.

4.3 OpƟmizaƟon

4.3 OpƟmizaƟon
In SecƟon 3.1 we learned about extreme values – the largest and smallest values
a funcƟon aƩains on an interval. We moƟvated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this secƟon we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situaƟons that require us to create the appropriate mathemaƟcal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of opƟmizaƟon.

Example 4.3.1 OpƟmizaƟon: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area funcƟon – aŌer
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with 2 variables; we need to
reduce this down to a single variable. We know more about the situaƟon: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equaƟon:

Perimeter = 100 = 2x+ 2y.

We now have 2 equaƟons and 2 unknowns. In the laƩer equaƟon, we solve
for y:

y = 50− x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(50− x).

Note we now have an equaƟon of one variable; we can truly call the Area a
funcƟon of x.

Notes:
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This funcƟon onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625Ō2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 Ō. with maxi-
mum area is a square, with sides of length 25 Ō.

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equaƟons are oŌen
not reducible to a single variable (hence mulƟ–variable calculus is needed) and
the equaƟons themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundaƟon for the mathemaƟcs you will likely en-
counter later.

We outline here the basic process of solving these opƟmizaƟon problems.

Key Idea 4.3.1 Solving OpƟmizaƟon Problems

1. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equaƟons relevant to the context of the problem, using the
informaƟon given. (One of these should describe the quanƟty to
be opƟmized. We’ll call this the fundamental equaƟon.)

3. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

(conƟnued). . .

Notes:
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Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.

4.3 OpƟmizaƟon

Key Idea 4.3.1 Solving OpƟmizaƟon Problems – ConƟnued

4. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

5. Find the extreme values of this funcƟon on the determined do-
main.

6. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a funcƟon of one variable.

Notes:
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the power staƟon to an offshore facility
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Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.
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4. We want the area to be nonnegaƟve. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The laƩer inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the criƟcal points. We have A′(x) = 50 − x; seƫng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
Ō2.

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a system of equaƟons. These equa-
Ɵons allow us to write a certain quanƟty as a funcƟon of one variable, which we
then opƟmize.

Example 4.3.3 OpƟmizaƟon: minimizing cost
A power line needs to be run from a power staƟon located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power staƟon to
the facility.

It costs $50/Ō. to run a power line along the land, and $130/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ Wewill follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all 5000 Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

Notes:
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By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This funcƟon only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the criƟcal values of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Seƫng c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3

≈ 416.67.

EvaluaƟng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 Ō., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 Ō.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

In the exercises you will see a variety of situaƟons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equaƟons from situaƟons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next secƟon introduces our final applicaƟon of the derivaƟve: differen-
Ɵals. Given y = f(x), they offer a method of approximaƟng the change in y aŌer
x changes by a small amount.

Notes:
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Exercises 4.3
Terms and Concepts

1. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme
values” problem in a “story problem” seƫng.

2. T/F: This secƟon teaches one to find the extreme values of
a funcƟon that has more than one variable.

Problems

3. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of 100.

4. Find the minimum sum of two posiƟve numbers whose
product is 500.

5. Find the maximum sum of two posiƟve numbers whose
product is 500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimizaƟon in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., 2w+ 2h).

What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example 4.3.3 can be useful.)

16. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run tominimize the
Ɵme it takes to get to the sƟck? (Google “calculus dog” to learn
more about a dog’s ability to minimize Ɵmes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.4.1: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to esƟ-
mate sin 1.1.

Chapter 4 ApplicaƟons of the DerivaƟve

4.4 DifferenƟals
In SecƟon 2.2 we explored the meaning and use of the derivaƟve. This secƟon
starts by revisiƟng some of those ideas.

Recall that the derivaƟve of a funcƟon f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equaƟon

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximaƟons of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see how we are approximaƟng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximaƟon this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represenƟng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a funcƟon approximates well the values of that funcƟon
near x = c.

As the x-value changes from c to c +∆x, the y-value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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4.4 DifferenƟals

Replacing f(c+∆x) with its tangent line approximaƟon, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equaƟon is important; it becomes the basis of the upcoming Def-
iniƟon and Key Idea. In short, it says that when the x-value changes from c to
c+∆x, the y value of a funcƟon f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defini-
Ɵon.

DefiniƟon 4.4.1 DifferenƟals of x and y.

Let y = f(x) be differenƟable. The differenƟal of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
enƟal of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equaƟon: f ′(x) = dy/dx. This states that
the derivaƟve of f with respect to x is the differenƟal of y divided by the differ-
enƟal of x; this is not the alternate notaƟon for the derivaƟve, dy

dx . This laƩer
notaƟon was chosen because of the fracƟon–like qualiƟes of the derivaƟve, but
again, it is one symbol and not a fracƟon.

It is helpful to organize our new concepts and notaƟons in one place.

Key Idea 4.4.1 DifferenƟal NotaƟon

Let y = f(x) be a differenƟable funcƟon.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e.,∆x = dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by EquaƟon (4.3), is an approximaƟon of
the change in y value as x changes by∆x; dy ≈ ∆y.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

What is the value of differenƟals? Like many mathemaƟcal concepts, differ-
enƟals provide both pracƟcal and theoreƟcal benefits. We explore both here.

Example 4.4.1 Finding and using differenƟals
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

SÊ½çã®ÊÄ The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differenƟal to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximaƟon is really good!)

So why bother?
In “most” real life situaƟons, we do not know the funcƟon that describes

a parƟcular behavior. Instead, we can only take measurements of how things
change – measurements of the derivaƟve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direcƟon (i.e., the velocity) of water at any locaƟon. It is very hard
to create a funcƟon that describes the overall flow, hence it is hard to predict
where a floaƟng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differenƟals. Over small
intervals, the path taken by a floaƟng object is essenƟally linear. DifferenƟals
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
Ɵal EquaƟons courses.

We use differenƟals once more to approximate the value of a funcƟon. Even
though calculators are very accessible, it is neat to see how these techniques can
someƟmes be used to easily compute something that looks rather hard.

Notes:
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4.4 DifferenƟals

Example 4.4.2 Using differenƟals to approximate a funcƟon value
Approximate

√
4.5.

SÊ½çã®ÊÄ We expect
√
4.5 ≈ 2, yet we can do beƩer. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differenƟals,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

DifferenƟals are important when we discuss integraƟon. When we study
that topic, we will use notaƟon such as∫

f(x) dx

quite oŌen. While we don’t discuss here what all of that notaƟon means, note
the existence of the differenƟal dx. Proper handling of integrals comes with
proper handling of differenƟals.

In light of that, we pracƟce finding differenƟals in general.

Example 4.4.3 Finding differenƟals
In each of the following, find the differenƟal dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differenƟal dy of y = f(x) is really no harder than finding the
derivaƟve of f; we justmulƟply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of
making certain approximaƟons. Another use is error propagaƟon. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this laƩer value as f(x) for some funcƟon f.
As the true length is x + ∆x, one really should have computed f(x + ∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differenƟals.

Example 4.4.4 Using differenƟals to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, esƟmate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equaƟon “mass
= volume× density.” In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differenƟal of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Notes:
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4.4 DifferenƟals

Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• EquaƟon solving (Newton’s Method),

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change),

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

In the next chapters, we will consider the “reverse” problem to compuƟng
the derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?
Being able to do so opens up an incredible world of mathemaƟcs and applica-
Ɵons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differenƟable funcƟon y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: DifferenƟals are important in the study of integraƟon.

5. How are differenƟals and tangent lines related?

6. T/F: In real life, differenƟals are used to approximate func-
Ɵon values when the funcƟon itself is not known.

Problems
In Exercises 7 – 16, use differenƟals to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17 – 30, compute the differenƟal dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. f(x) = ln
(
sec x

)
Exercises 31 – 34 use differenƟals to approximate propagated
error.

31. A set of plasƟc spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the boƩom. What
is the propagated error if the Ɵmemeasurement is accurate
to 2/10ths of a second and the measured Ɵme is:

(a) 2 seconds?

(b) 5 seconds?

33. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

34. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 35 – 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compuƟng.)

35. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.
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l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the quesƟons of Exercise 35, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.

37. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercises 35 – 37 are essenƟally
the same. Which setup gives the most accurate result?

39. Consider the setup in Exercise 37. This Ɵme, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?
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