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4: APPLICATIONS OF THE
DERIVATIVE

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x> + x4 1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar functions. Fortunately, there are methods that
can give us approximate solutions to equations like these. These methods can
usually give an approximation correct to as many decimal places as we like. In
Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this xy. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(xo0,f(x0)) and see where it meets the x-axis. Call this point x;. Then repeat the
process —draw the tangent line to the graph at (x1, f(x1)) and see where it meets
the x-axis. (See Figure 4.1.1(b).) Call this point x,. Repeat the process again to
get x3, X4, etc. This sequence of points will often converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x;. We started with the tangent line to the graph at (xo, f(xo)).
The slope of this tangent line is f/(xo) and the equation of the line is

y = f'(xo0)(x — Xo) + f(xo)-

This line crosses the x-axis when y = 0, and the x—value where it crosses is what
we called x;. So let y = 0 and replace x with x;, giving the equation:

0 =f"(x0)(x1 — Xo) + f(xo).

Now solve for x;:
f(Xo)
f'(x0)

X1 = Xo —

0.5 +

x Lo _____
3
>
s

—0.5 +

(a)

0.5 +

—0.5 +

x

B

x|

X
P

0.5 | \

—0.5

(c)

Figure 4.1.1: Demonstrating the geo-
metric concept behind Newton’s Method.
Note how x3 is very close to a solution to

f(x)=0.



Chapter 4

Note: Newton’s Method is not infalli- 2
ble. The sequence of approximate values
may not converge, or it may converge so

Applications of the Derivative

Since we repeat the same geometric process to find x, from x;, we have

flxa)
flia)

X2 = X1 —

In general, given an approximation x,, we can find the next approximation, x,+1
as follows:

f(xn)

Xn+1 = Xn _f'(X )
n

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differentiable function on an interval / with a root in /. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value xp as an initial approximation of the root. (This is
often done by looking at a graph of f.)

. Create successive approximations iteratively; given an approxima-
tion x,, compute the next approximation x,,41 as

slowly that one is “tricked” into thinking a Fxn)
certain approximation is better than it ac- Xnt1 = Xn — T u
tually is. These issues will be discussed at f (X")

the end of the section.

168

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x> — x> — 1 = 0, accurate to the first 3 places after
the decimal, using Newton’s Method and an initial approximation of xo = 1.

SOLUTION To begin, we compute f’(x) = 3x*> — 2x. Then we apply the

Notes:



4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

1 ’-12-1
x3=1-— ) _ - =2
(1) 3.12-2-1
2 23-22-1
X3 =2— f2) =2— ———— =1.625,
f(2) 3.22-2.2
f(1.625) 1.625% — 1.6252 — 1
x3=1.625— - =1.625 — ~ 1.48579. y
f/(1.625) 3-1.6252 —2-1.625 A
f(1.48579)
X4 = 1.48579 — - ~ 1.46596
f'(1.48579) ; ; ;
f(1.46596) 0.5 ! 15
Xs = 1.46596 — " ~ 1.46557
f'(1.46596) —0.5 |

We performed 5 iterations of Newton’s Method to find a root accurate to the
first 3 places after the decimal; our final approximation is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our xs is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
initial approximation of x, = 1 was not particularly accurate; a closer guess
would have been xg = 1.5. Our choice was based on ease of initial calculation,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate initial approximation.

—-1.5

Figure 4.1.2: Agraphof f(x) = X —x* —1
in Example 4.1.1.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculation. Start by pressing 1 and then Enter.
(We have just entered our initial guess, xo = 1.) Now compute

f(Ans)
f'(Ans)

by entering the following and repeatedly press the Enter key:

Ans —

Ans-(Ans~3-Ans~2-1)/(3*xAns”2-2*Ans)

Each time we press the Enter key, we are finding the successive approximations,
X1, X2, ..., and each one is getting closer to the root. In fact, once we get past
around x; or so, the approximations don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many iter-
ations can be computed very quickly.

Notes:
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Chapter 4 Applications of the Derivative

Figure 4.1.3: A graph of f(x) = cosx — x
used to find an initial approximation of its
root.
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Example 4.1.2 Using Newton’s Method to find where functions intersect
Use Newton’s Method to approximate a solution to cosx = x, accurate to 5
places after the decimal.

SOLUTION Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equations like f(x) = g(x). However, this is
not a problem; we can rewrite the latter equation as f(x) — g(x) = 0 and then
use Newton’s Method.

So we rewrite cosx = x as cosx — x = 0. Written this way, we are finding
a root of f(x) = cosx — x. We compute f'(x) = —sinx — 1. Next we need a
starting value, xo. Consider Figure 4.1.3, where f(x) = cosx — x is graphed. It
seems that xo = 0.75 is pretty close to the root, so we will use that as our xg.
(The figure also shows the graphs of y = cosx and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute X3, X, etc. The formula for x; is

cos(0.75) — 0.75

- ~ 0.7391111388.
—sin(0.75) — 1

x1 =0.75 —

Apply Newton’s Method again to find x;:

cos(0.7391111388) — 0.7391111388

X, = 0.7391111388 — :
—sin(0.7391111388) — 1

~ 0.7390851334.

We can continue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inputting
our initial approximation. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximations x, and x3 did not differ for at least the first 5 places after the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x, was not hard. It is interesting to see how we
found an approximation, accurate to as many decimal places as our calculator
displays, in just 4 iterations.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computation in this problem.

Notes:



x = .75
while true
oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001
break

This code calculates x3, x,, etc., storing each result in the variable x. The pre-
vious approximation is stored in the variable o1dx. We continue looping until
the difference between two successive approximations, abs (x-o0ldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the initial guess, xo? Generally, the closer to the
actual root the initial guess is, the better. However, some initial guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
flx) = x3 —x? — 1. Choosing xo = 0 would have been a particularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f'(0) = 0, the tangent line is horizontal and does not intersect the x—axis.
Graphically, we see that Newton’s Method fails.

We can also see analytically that it fails. Since

f(0)
f'(0)

and f’(0) = 0, we see that x; is not well defined.

This problem can also occur if, for instance, it turns out that f'(xs) = 0.
Adjusting the initial approximation xo by a very small amount will likely fix the
problem.

Itis also possible for Newton’s Method to not converge while each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x, = 0.1. Figure
4.1.5(a) shows graphically the calculation of x;; notice how it is farther from the
root than xq. Figures 4.1.5(b) and (c) show the calculation of x, and x3, which are
even farther away; our successive approximations are getting worse. (It turns
out that in this particular example, each successive approximation is twice as far
from the true answer as the previous approximation.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
time,” and itis generally very fast. Once the approximations get close to the root,

X1:0—

Notes:

4.1 Newton’s Method

Figure 4.1.4: Agraph of f(x) = x* —x*—1,
showing why an initial approximation of
Xo = 0 with Newton’s Method fails.

(a)

(c)

Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x/*, regardless of
the choice of xo.
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Chapter 4 Applications of the Derivative

Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:
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Exercises 4.1

Terms and Concepts

1. T/F: Given a function f(x), Newton’s Method produces an
exact solution to f(x) = 0.

2. T/F: In order to get a solution to f(x) = O accurate to d

places after the decimal, at least d + 1 iterations of New-
tons’ Method must be used.

Problems

In Exercises 3 — 8, the roots of f(x) are known or are easily
found. Use 5 iterations of Newton’s Method with the given
initial approximation to approximate the root. Compare it to
the known value of the root.

3. f(x) = cosx,xo = 1.5

4. f(x) =sinx,xo =1

5. f(x) =xX* +x—2,% =0

6. fx) =x* —2,x0=1.5

7. f(x) =Inx,xo =2

8 fX)=x - +x—1,%=1

In Exercises 9 — 12, use Newton’s Method to approximate all
roots of the given functions accurate to 3 places after the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good initial approx-
imations.

9. fX) =X +5¢ —x—1

10. f(x) =x"+2¢ —7x* —x+5

11. f(x) = x7 — 2x® —10x® + 10 0n (-2,2)

12. f(x) = x¥* cosx + (x — 1) sinx on (-3, 3)

In Exercises 13 — 16, use Newton’s Method to approximate
when the given functions are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good initial approx-
imations.

13. f(x) = x*, g(x) = cosx

14. f(x) = x* — 1,9(x) = sinx

15. f(x) = e’ g(x) = cosx

16. f(x) = x, g(x) = tanxon [—6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
X —3x* + x4+ 3whenx, = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
—17x* + 130x* — 301x* 4 156x + 156 when xo = 1?
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Chapter 4 Applications of the Derivative

Note: This section relies heavily on im-
plicit differentiation, so referring back to
Section 2.6 may help.
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4.2 Related Rates

When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 27r; knowing that C = 6in determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quantity is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

SOLUTION The circumference and radius of a circle are related by C =
27r. We are given information about how the length of r changes with respect

to time; that is, we are told % = 5in/hr. We want to know how the length of C
changes with respect to time, i.e., we want to know %.

Implicitly differentiate both sides of C = 2zr with respect to t:

C=2nr

d d
dc_, o
at

As we know Z—: = 5in/hr, we know

dc .
i 275 = 107 ~ 31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:



SOLUTION

1. We can answer this question two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle = area of circle x depth.

Since the depth is constant at 1/8in, the area must be growing by 16in?/s.

This approach reveals the underlying related—rates principle. Let Vand A
represent the Volume and Area of the puddle. We know V = A x % Take
the derivative of both sides with respect to t, employing implicit differen-

tiation.
1
V=-A
8
d d /1
—(vV)=—(=A
&= ()
dv  1dA
dt ~ 8dt
dv __ __1dA dA __ H
As & = 2, we know 2 = 39 and hence & = 16. Thus the area is

growing by 16in?/s.

2. To start, we need an equation that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = 7rr2. We should be able to learn about the rate at which
the radius is growing with this information.

Implicitly derive both sides of A = 7r? with respect to t:

A=Tr
d d )
E( ) = &(W)
dA 2t r
= onr—
dt dt
Our work above told us that % = 16in?/s. Solving for %, we have
dr 8
dt  wr’

Note how our answer is not a number, but rather a function of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:

4.2

Related Rates
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N
B=1/2 -

4 E
Car

o~

~

- ¢

Il

<

TI Officer

Figure 4.2.1: A sketch of a police car
(at bottom) attempting to measure the
speed of a car (at right) in Example 4.2.3.
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circle already is. If the circle is very large, adding 2in® of water will not
make the circle much bigger at all. If the circle is dime—sized, adding the
same amount of water will make a radical change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

ar 8 4 0.25in/s
—_— = — = — 0. | .
dt 10w 57

Example 4.2.3 Studying related rates

Radar guns measure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“—25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, attached to a police car) then radar readouts
are only immediately understandable if the gun and the object are moving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight—line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersection of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SOLUTION Using the diagram in Figure 4.2.1, let’s label what we know
about the situation. As both the police officer and other driver are 1/2 mile from
the intersection, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/1/2 ~ 0.707.

94 — _30. The

We know the police officer is traveling at 30mph; that is, 7
reason this rate of change is negative is that A is getting smaller; the distance
between the officer and the intersection is shrinking. The radar measurement
is % = 20. We want to find 2.

We need an equation that relates Bto A and/or C. The Pythagorean Theorem

Notes:



is a good choice: A2 + B> = (2. Differentiate both sides with respect to t:

A2+ B =7

d d
— (A2 +B%) = — (C?
2498 | g% _ 5%
dt dt " dt

We have values for everything except %. Solving for this we have

dB  CL — A%
P % ~ 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates

A camera is placed on a tripod 10ft from the side of a road. The camerais to turn
to track a car that is to drive by at 100mph for a promotional video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SOLUTION We seek information about how fast the camera is to turn;
therefore, we need an equation that will relate an angle 6 to the position of the
camera and the speed and position of the car.

Figure 4.2.2 suggests we use a trigonometric equation. Letting x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tanf = . (4.1)
10

As the car is moving at 100mph, we have % = —100mph (asin the last example,
dx

since x is getting smaller as the car travels, g is negative). We need to convert

the measurements so they use the same units; rewrite —100mph in terms of
ft/s:
X _ _100™ = 100
dt hr hr

m ft 1 hr _
— .5280— - —— — = —146.6ft/s.
m 3600 s

Now take the derivative of both sides of Equation (4.1) using implicit differenti-

Notes:

4.2 Related Rates

Note: Example 4.2.3 is both interesting
and impractical. It highlights the difficulty
in using radar in a non—linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.

The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar—like
measurements and the concepts of
related rates.

100mph

10ft

Figure 4.2.2: Tracking a speeding car (at
left) with a rotating camera.
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ation:
tanG:L
10
d d /s x
—(tanf) = — (—
g (ten?) dt<10)
do 1 dx
297:77
Yt T 104
i&_coszﬁg (4.2)
dt = 10 dt '

We want to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when 8 = 0). Our mathe-
matics bears this out. In Equation (4.2) we see this is when cos? @ is largest; this
is when cosf = 1, or when 6§ = 0.

With & ~ —146.67ft/s, we have

do 1rad
— = ———146. = —14. i .
; 1 6.67ft/s 667radians/s

We find that z—f is negative; this matches our diagram in Figure 4.2.2 for 6 is
getting smaller as the car approaches the camera.

What is the practical meaning of —14.667radians/s? Recall that 1 circular
revolution goes through 27 radians, thus 14.667rad/s means 14.667/(27) ~
2.33 revolutions per second. The negative sign indicates the camera is rotating

in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’s Method uses the derivative to approximate roots of functions; this
section stresses the “rate of change” aspect of the derivative to find a relation-
ship between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.

Notes:



Exercises 4.2

Terms and Concepts

1. T/F: Implicit differentiation is often used when solving “re-
lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems

3. Water flows onto a flat surface at a rate of 5cm?/s forming a
circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm®/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situation introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersection, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is —80mph?

6. Consider the traffic situation introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situations.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersection, while the other car
is 1 mile from the intersection traveling west and the
radar reading is —80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersection, while the other car is
1/2 mile from the intersection traveling west and the
radar reading is —80mph?

7. An F-22 aircraft is flying at 500mph with an elevation of
10,000ft on a straight—line path that will take it directly over
an anti—aircraft gun.

o~

10,000 ft

X

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

8.

10.

11.

(a) 1 mile away?
(b) 1/5 mile away?

(c) Directly overhead?

An F-22 aircraft is flying at 500mph with an elevation of
100ft on a straight-line path that will take it directly over
an anti—aircraft gun as in Exercise 7 (note the lower eleva-
tion here).

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

(a) 1000 feet away?
(b) 100 feet away?

(c) Directly overhead?

A 24ft. ladder is leaning against a house while the base is
pulled away at a constant rate of 1ft/s.

>
Gi 1ft/s
—

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?
(b) 10 feet from the house?
(c) 23 feet from the house?

(d) 24 feet from the house?

A boat is being pulled into a dock at a constant rate of
30ft/min by a winch located 10ft above the deck of the
boat.

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?
(b) 15 feet out?
(c) 1foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

An inverted cylindrical cone, 20ft deep and 10ft across at
the top, is being filled with water at a rate of 10ft3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1foot?
(b) 10 feet?
(c) 19 feet?

How long will the tank take to fill when starting at empty?
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12.

13.

A rope, attached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connection point between
rope and weight.

2 ft/s
—

— 30ft —

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ft) and begins to walk away at a rate
of 2ft/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

Consider the situation described in Exercise 12. Suppose
the man starts 40ft from the weight and begins to walk
away at a rate of 2ft/s.

(a) How long is the rope?

(b) How fastis the weight rising after the man has walked
10 feet?

(c) How fastisthe weight rising after the man has walked
30 feet?

(d) How far must the man walk to raise the weight all the
way to the pulley?

14. A hot air balloon lifts off from ground rising vertically. From

15.

100 feet away, a 5’ woman tracks the path of the balloon.
When her sightline with the balloon makes a 45° angle with
the horizontal, she notes the angle is increasing at about
5°/min.

(a) What is the elevation of the balloon?

(b) How fast is it rising?

A company that produces landscaping materials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5ft3/sec; the physical properties of the sand, in conjunc-
tion with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.

How fast is the cone rising when it has a height of 30 feet?



4.3 Optimization

In Section 3.1 we learned about extreme values —the largest and smallest values
a function attains on an interval. We motivated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area

A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SOLUTION One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area function — after
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with 2 variables; we need to
reduce this down to a single variable. We know more about the situation: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equation:

Perimeter = 100 = 2x + 2y.

We now have 2 equations and 2 unknowns. In the latter equation, we solve
fory:
y =50 —x.

Now substitute this expression for y in the area equation:
Area = A(x) = x(50 — x).

Note we now have an equation of one variable; we can truly call the Area a
function of x.

Notes:

4.3 Optimization

X

Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.
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This function only makes sense when 0 < x < 50, otherwise we get negative
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the critical points, we take the derivative of A(x) and set it equal to
0, then solve for x.

A(x) = x(50 — x)
=50x — X
A'(x) = 50 — 2x

We solve 50 — 2x = 0 to find x = 25; this is the only critical point. We evaluate
A(x) at the endpoints of our interval and at this critical point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft>. This is the max-
imum. Since we earlier found y = 50 — x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 ft. with maxi-
mum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.1 Solving Optimization Problems

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We'll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able function using substitutions derived from the other equa-
tions.

(continued). . .

Notes:



Key Idea 4.3.1 Solving Optimization Problems — Continued

4. ldentify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. ldentify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 Optimization: perimeter and area

Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SOLUTION We will follow the steps outlined by Key Idea 4.3.1.

1.

We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

We want to maximize the area; as in the example before,
Area = xy.

This is our fundamental equation. This defines area as a function of two
variables, so we need another equation to reduce it to one variable.

We again appeal to the perimeter; here the perimeter is
Perimeter = 100 = x + 2y.
Note how this is different than in our previous example.

We now reduce the fundamental equation to a single variable. In the
perimeter equation, solve for y: y = 50 — x/2. We can now write Area as

1
Area = A(x) = x(50 — x/2) = 50x — EXZ'

Area is now defined as a function of one variable.

Notes:

4.3 Optimization

Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.
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1000 ft

5000 ft

Figure 4.3.3: Running a power line from
the power station to an offshore facility
with minimal cost in Example 4.3.3.

5000 — x X

Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.

184

4. We want the area to be nonnegative. Since A(x) = x(50 — x/2), we want
x > 0and 50 — x/2 > 0. The latter inequality implies that x < 100, so
0 < x < 100.

5. We now find the extreme values. At the endpoints, the minimum is found,
giving an area of 0.

Find the critical points. We have A’(x) = 50 — x; setting this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 — x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a system of equations. These equa-
tions allow us to write a certain quantity as a function of one variable, which we
then optimize.

Example 4.3.3 Optimization: minimizing cost
A power line needs to be run from a power station located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power station to
the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SOLUTION We will follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate solutions that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecting the two locations with a straight line. However, this requires
that all the wire be laid underwater, the most costly option. Second, we could
minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non—minimal cost.

The optimal solution likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances — the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

Notes:



By choosing x as we did, we make the expression under the square root sim-
ple. We now create the cost function.

Cost = land cost + water cost
$50 x land distance + $130 x water distance

50(5000 —x)  +  130v/x? + 10002.

So we have ¢(x) = 50(5000 — x) + 130v/x? 4+ 10002. This function only
makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we still evaluate c(x) at each to verify.

c(0) = 380,000  ¢(5000) ~ 662,873.

We now find the critical values of ¢c(x). We compute ¢’(x) as

c’'(x) = —50 + 130X
VX2 + 10002

Recognize that this is never undefined. Setting ¢’(x) = 0 and solving for x,
we have:
130x

S — )|
VX2 410002
13x
VX2 + 10002
1302 _
x2 4+ 10002
130%* = 50 (x* + 1000?)
130%x* — 50°x*> = 507 - 10007
(130% — 50%)x* = 50,0007
2 %0 0002
1302 — 502
50,000
v/1302 — 502
L 50,000 _ 1250

— =~ 416.67.
120 3

—50 +

Evaluating c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000 — 416.67 = 4583.33 ft., and the under-

water distance is v/416.672 + 10002 ~ 1083 ft.

Notes:

4.3

Optimization
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In the exercises you will see a variety of situations that require you to com-
bine problem—solving skills with calculus. Focus on the process; learn how to
form equations from situations that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next section introduces our final application of the derivative: differen-
tials. Given y = f(x), they offer a method of approximating the change in y after
x changes by a small amount.

Notes:



Exercises 4.3

Terms and Concepts

. T/F: An “optimization problem” is essentially an “extreme

values” problem in a “story problem” setting.

. T/F: This section teaches one to find the extreme values of

a function that has more than one variable.

Problems

10.

11.

. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.

. Find the minimum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two numbers, each of which is

in [0,300] whose product is 500.

. Find the maximal area of a right triangle with hypotenuse

of length 1.

. A rancher has 1000 feet of fencing in which to construct

adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

. Astandard soda can is roughly cylindrical and holds 355cm?

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

Find the dimensions of a cylindrical can with a volume of
206in° that minimizes the surface area.

The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in® with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimization in mind?

The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108" (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross section, i.e., 2w + 2h).

12.

13.

14.

15.

16.

17.

What is the maximum volume of a package with a square
cross section (w = h) that does not exceed the 108” stan-
dard?

The strength S of a wooden beam is directly proportional
to its cross sectional width w and the square of its height h;
that is, S = kwh? for some constant k.

w

12 |h

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A woman throws a stick into a lake for her dog to fetch;
the stick is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Hint: the figure from
Example 4.3.3 can be useful.)

A woman throws a stick into a lake for her dog to fetch;
the stick is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize the
time it takes to get to the stick? (Google “calculus dog” to learn
more about a dog’s ability to minimize times.)

What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.4.1: Graphing f(x) = sinxand its
tangent line at x = 7/3 in order to esti-
mate sin 1.1.
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4.4 Differentials

In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f. At x = ¢, the tangent line to the graph of f has
equation

y =f'(©)(x =) +flc).

The tangent line can be used to find good approximations of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sinx at x = 7/3 = 1.05. Recall that sin(7/3) = v/3/2 ~ 0.866, and
cos(m/3) = 1/2. Thus the tangent line to f(x) = sinxatx = 7/3 is:

() = %(X ~ 7/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sinx graphed along with its tan-
gent line at x = /3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see how we are approximating sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

0(1.1) = %(1.1 —m/3) 4+ 0.866

1
= 5(0‘053) + 0.866 = 0.8925.
(We leave it to the reader to see how good of an approximation this is.)

We now generalize this concept. Given f(x) and an x—value c, the tangent
lineis £(x) = f'(c)(x — c) 4+ f(c). Clearly, f(c) = ¢(c). Let Ax be a small number,
representing a small change in x value. We assert that:

flc+ Ax) = l(c + Ax),

since the tangent line to a function approximates well the values of that function
near x = c.

As the x-value changes from c to ¢ + Ax, the y-value of f changes from f(c)
to f(c + Ax). We call this change of y value Ay. That is:

Ay = f(c + Ax) — f(c).

Notes:



Replacing f(c + Ax) with its tangent line approximation, we have

Ay =~ l(c + Ax) — f(c)

=£'(c)((c + Ax) — ¢) + f(c) — f(c)
= f'(c)Ax (4.3)

This final equation is important; it becomes the basis of the upcoming Def-
inition and Key Idea. In short, it says that when the x-value changes from c to
¢ + Ax, the y value of a function f changes by about f'(c) Ax.

We introduce two new variables, dx and dy in the context of a formal defini-
tion.

Definition 4.4.1 Differentials of x and y.

Let y = f(x) be differentiable. The differential of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
ential of y, denoted dy, is

dy = f'(x)dx.

We can solve for f'(x) in the above equation: f’(x) = dy/dx. This states that
the derivative of f with respect to x is the differential of y divided by the differ-
ential of x; this is not the alternate notation for the derivative, %. This latter
notation was chosen because of the fraction—like qualities of the derivative, but
again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Key Idea 4.4.1 Differential Notation
Let y = f(x) be a differentiable function.

1. Let Ax represent a small, nonzero change in x value.
2. Let dxrepresent a small, nonzero change in x value (i.e., Ax = dx).

3. Let Ay be the change in y value as x changes by Ax; hence
Ay = f(x + Ax) — f(x).

4. Let dy = f'(x)dx which, by Equation (4.3), is an approximation of
the change in y value as x changes by Ax; dy =~ Ay.

Notes:

4.4 Differentials
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What is the value of differentials? Like many mathematical concepts, differ-
entials provide both practical and theoretical benefits. We explore both here.

Example 4.4.1 Finding and using differentials
Consider f(x) = x*. Knowing f(3) = 9, approximate f(3.1).

SOLUTION The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know how much the y value changes from f(3) to f(3.1)
(i-e., if we know Ay), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate Ay with dy.

Ay ~ dy
=f'(3)dx
=2-3-0.1=0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) =
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differential to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?

In “most” real life situations, we do not know the function that describes
a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques can
sometimes be used to easily compute something that looks rather hard.

Notes:
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Example 4.4.2 Using differentials to approximate a function value
Approximate v/4.5.

SOLUTION We expect V4.5 = 2, yet we can do better. Let f(x) = VX,
and let ¢ = 4. Thus f(4) = 2. We can compute f'(x) = 1/(2y/x), so f'(4) =
1/4.

We approximate the difference between f(4.5) and f(4) using differentials,
with dx = 0.5:

f(4.5) —f(4) = Ay~ dy =f'(4) -dx = 1/4-1/2 = 1/8 = 0.125.

The approximate change in ffrom x = 4 to x = 4.5is 0.125, so we approximate

V4.5 ~ 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as

/ f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.4.3 Finding differentials
In each of the following, find the differential dy.

1.y =sinx 2.y =¢e"(x*+2) .y=vx2+3x-1

SOLUTION
1. y=sinx:  Asf(x) = sinx, f'(x) = cosx. Thus

dy = cos(x)dx.

2.y = e(x* +2): Letf(x) = e(x* + 2). We need f'(x), requiring the
Product Rule.

We have f'(x) = e*(x* 4 2) + 2xe*, so

dy = ("(x* +2) + 2xe*)dx.

Notes:
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3. y = vx*+3x—1: Letf(x) = vx%+ 3x — 1; we need f’(x), requiring

the Chain Rule.

1 1 2 3
We have f'(x) = E(x2 +3x—1)77(2x+3) = 2\/% Thus
dy = (2x + 3)dx
RN R

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f; we just multiply f'(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method of
making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x + Ax (where Ax is the
error, which we hope is small). This measurement of x may be used to compute
some other value; we can think of this latter value as f(x) for some function f.
As the true length is x + Ax, one really should have computed f(x + Ax). The
difference between f(x) and f(x + Ax) is the propagated error.

How close are f(x) and f(x + Ax)? This is a difference in “y” values:

fix+ Ax) — f(x) = Ay =~ dy.

We can approximate the propagated error using differentials.

Example 4.4.4 Using differentials to approximate propagated error

A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ==0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm?, estimate the propagated error in the mass
of the ball bearing.

SOLUTION The mass of a ball bearing is found using the equation “mass
=volume x density.” In this situation the mass function is a product of the radius
of the ball bearing, hence itism = 7.85§7Tr3. The differential of the mass is

dm = 31.4xrdr.

The radius is to be 1cm; the manufacturing tolerance in the radius is #=0.05mm,
or +0.005cm. The propagated error is approximately:
Am =~ dm
= 31.47(1)%(40.005)
= +0.493g

Notes:



Is this error significant? It certainly depends on the application, but we can get
an idea by computing the relative error. The ratio between amount of error to
the total mass is

dm | 0.493
m " 7.85%x
0.493
T 3288
= £0.015,

or +1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was
supposed to be 10cm, the same manufacturing tolerance would give a propa-

gated errorin mass of 12.33g, which corresponds to a percent error of £0.188%.

While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivative by studying how it relates to the graph of a function
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivative to yet more uses:

¢ Equation solving (Newton’s Method),

¢ Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

e Optimization (applied extreme values), and

¢ Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f, can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica-
tions.

Notes:

4.4 Differentials
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Exercises 4.4

Terms and Concepts

. T/F: Given a differentiable function y = f(x), we are gen-
erally free to choose a value for dx, which then determines
the value of dy.

. T/F: The symbols “dx” and “Ax” represent the same con-
cept.

T/F: The symbols “dy” and “Ay” represent the same con-
cept.

T/F: Differentials are important in the study of integration.
. How are differentials and tangent lines related?

. T/F: In real life, differentials are used to approximate func-
tion values when the function itself is not known.

Problems

In Exercises 7 — 16, use differentials to approximate the given
value by hand.

7

10.

11.

12.

13.

14.

15.

16.

. 2.05?
5.93?
5.13

6.8°

In Exercises 17 — 30, compute the differential dy.

17

18

19.

20

21.

.y=x*+3x—5
y=x —x
1
V=
.y = (2x+sinx)’
y:X2e3X

22. y:%

2.y = tanzxﬁ
24. y = In(5x)
25. y = €“sinx
26. y = cos(sinx)
ni
28. y=3"Inx
29. y=xlnx—x

30.

f(x) = In (secx)

Exercises 31 — 34 use differentials to approximate propagated
error.

31.

32.

33.

34.

A set of plastic spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t%. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bottom. What
is the propagated error if the time measurement is accurate
to 2/10™ of a second and the measured time is:

(a) 2 seconds?

(b) 5 seconds?

What is the propagated error in the measurement of the
cross sectional area of a circular log if the diameter is mea-
sured at 15", accurate to 1/4”?

A wall is to be painted that is 8’ high and is measured to
be 10’, 7 long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rateto 1/2".

Exercises 35 — 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before computing.)

35.

The length | of a long wall is to be approximated. The angle
0, as shown in the diagram (not to scale), is measured to be
85.2°, accurate to 1°. Assume that the triangle formed is a
right triangle.



(a) What is the measured length / of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the questions of Exercise 35, but with a measured
angle of 71.5°, accurate to 1°, measured from a point 100’
from the wall.

37. The length / of a long wall is to be calculated by measuring
the angle 8 shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143°, accurate to 1°.

38.

39.

(a) What is the measured length of the wall?
(b) What is the propagated error?
(c) What is the percent error?

The length of the walls in Exercises 35 — 37 are essentially
the same. Which setup gives the most accurate result?

Consider the setup in Exercise 37. This time, assume the
angle measurement of 143° is exact but the measured 50’
from the wall is accurate to 6”. What is the approximate
percent error?
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