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9.15 Show limn→∞ an

n! = 0 for all a ∈ R.

9.16 Use Theorems 9.9 and 9.10 or Exercises 9.9–9.15 to prove the following:

(a) lim n4+8n
n2+9 = +∞

(b) lim[2
n

n2 + (−1)n] = +∞
(c) lim[3

n

n3 − 3n

n! ] = +∞
9.17 Give a formal proof that limn2 = +∞ using only Definition 9.8.

9.18 (a) Verify 1 + a+ a2 + · · · + an = 1−an+1

1−a for a �= 1.

(b) Find limn→∞(1 + a+ a2 + · · · + an) for |a| < 1.

(c) Calculate limn→∞(1 + 1
3 + 1

9 + 1
27 + · · · + 1

3n ).

(d) What is limn→∞(1 + a+ a2 + · · · + an) for a ≥ 1?

§10 Monotone Sequences and Cauchy

Sequences

In this section we obtain two theorems [Theorems 10.2 and 10.11]
that will allow us to conclude certain sequences converge without
knowing the limit in advance. These theorems are important because
in practice the limits are not usually known in advance.

10.1 Definition.
A sequence (sn) of real numbers is called an increasing sequence
if sn ≤ sn+1 for all n, and (sn) is called a decreasing sequence if
sn ≥ sn+1 for all n. Note that if (sn) is increasing, then sn ≤ sm
whenever n < m. A sequence that is increasing or decreasing4 will
be called a monotone sequence or a monotonic sequence.

Example 1
The sequences defined by an = 1 − 1

n , bn = n3 and cn =
(1+ 1

n)n are increasing sequences, although this is not obvious for the

4In the First Edition of this book, increasing and decreasing sequences were

referred to as “nondecreasing” and “nonincreasing” sequences, respectively.
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sequence (cn). The sequence dn = 1
n2 is decreasing. The sequences

sn = (−1)n, tn = cos(nπ3 ), un = (−1)nn and vn = (−1)n

n are not

monotonic sequences. Also xn = n1/n is not monotonic, as can be
seen by examining the first four values; see Example 1(d) on page 33
in §7.

Of the sequences above, (an), (cn), (dn), (sn), (tn), (vn) and (xn)
are bounded sequences. The remaining sequences, (bn) and (un), are
unbounded sequences.

10.2 Theorem.
All bounded monotone sequences converge.

Proof
Let (sn) be a bounded increasing sequence. Let S denote the set
{sn : n ∈ N}, and let u = supS. Since S is bounded, u represents a
real number. We show lim sn = u. Let ε > 0. Since u − ε is not an
upper bound for S, there exists N such that sN > u− ε. Since (sn)
is increasing, we have sN ≤ sn for all n ≥ N . Of course, sn ≤ u for
all n, so n > N implies u − ε < sn ≤ u, which implies |sn − u| < ε.
This shows lim sn = u.

The proof for bounded decreasing sequences is left to
Exercise 10.2.

Note the Completeness Axiom 4.4 is a vital ingredient in the
proof of Theorem 10.2.

Example 2
Consider the sequence (sn) defined recursively by

s1 = 5 and sn =
s2n−1 + 5

2sn−1
for n ≥ 2. (1)

Thus s2 = 3 and s3 = 7
3 ≈ 2.333. First, note a simple induction

argument shows sn > 0 for all n. We will show limn sn exists by
showing the sequence is decreasing and bounded; see Theorem 10.2.
In fact, we will prove the following by induction:

√
5 < sn+1 < sn ≤ 5 for n ≥ 1. (2)
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Since
√

5 ≈ 2.236, our computations show (2) holds for n ≤ 2. For
the induction step, assume (2) holds for some n ≥ 2. To show sn+2 <
sn+1, we need

s2n+1 + 5

2sn+1
< sn+1 or s2n+1 + 5 < 2s2n+1 or 5 < s2n+1,

but this holds because sn+1 >
√

5 by the assumption (2) for n. To
show sn+2 >

√
5, we need

s2n+1 + 5

2sn+1
>

√
5 or s2n+1 + 5 > 2

√
5sn+1

or s2n+1−2
√

5sn+1+5 > 0, which is true because s2n+1−2
√

5sn+1+5 =

(sn+1−
√

5)2 > 0. Thus (2) holds for n+ 1 whenever (2) holds for n.
Hence (2) holds for all n by induction. Thus s = limn sn exists.

If one looks at s4 = 47
21 ≈ 2.238095 and compares with

√
5 ≈

2.236068, one might suspect s =
√

5. To verify this, we apply the
limit Theorems 9.2–9.4 and the fact s = limn sn+1 to the equation
2 · sn+1sn = s2n + 5 to obtain 2s2 = s2 + 5. Thus s2 = 5 and s =

√
5,

since the limit is certainly not −√
5.

10.3 Discussion of Decimals.
We have not given much attention to the notion that real numbers
are simply decimal expansions. This notion is substantially correct,
but there are subtleties to be faced. For example, different decimal
expansions can represent the same real number. The somewhat more
abstract developments of the set R of real numbers discussed in §6
turn out to be more satisfactory.

We restrict our attention to nonnegative decimal expansions and
nonnegative real numbers. From our point of view, every nonnegative
decimal expansion is shorthand for the limit of a bounded increasing
sequence of real numbers. Suppose we are given a decimal expansion
K.d1d2d3d4 · · ·, where K is a nonnegative integer and each dj belongs
to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let

sn = K +
d1
10

+
d2
102

+ · · · +
dn
10n

. (1)

Then (sn) is an increasing sequence of real numbers, and (sn) is
bounded [by K + 1, in fact]. So by Theorem 10.2, (sn) converges to
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a real number we traditionally write as K.d1d2d3d4 · · ·. For example,
3.3333 · · · represents

lim
n→∞

(
3 +

3

10
+

3

102
+ · · · +

3

10n

)
.

To calculate this limit, we borrow the following fact about geometric
series from Example 1 on page 96 in §14:

lim
n→∞ a(1 + r + r2 + · · · + rn) =

a

1 − r
for |r| < 1; (2)

see also Exercise 9.18. In our case, a = 3 and r = 1
10 , so 3.3333 · · ·

represents 3
1− 1

10

= 10
3 , as expected. Similarly, 0.9999 · · · represents

lim
n→∞

(
9

10
+

9

102
+ · · · +

9

10n

)
=

9
10

1 − 1
10

= 1.

Thus 0.9999 · · · and 1.0000 · · · are different decimal expansions that
represent the same real number!

The converse of the preceding discussion also holds. That is, every
nonnegative real number x has at least one decimal expansion. This
will be proved, along with some related results, in §16.

Unbounded monotone sequences also have limits.

10.4 Theorem.
(i) If (sn) is an unbounded increasing sequence, then lim sn =

+∞.
(ii) If (sn) is an unbounded decreasing sequence, then lim sn =

−∞.

Proof
(i) Let (sn) be an unbounded increasing sequence. Let M > 0.

Since the set {sn : n ∈ N} is unbounded and it is bounded
below by s1, it must be unbounded above. Hence for some N
in N we have sN > M . Clearly n > N implies sn ≥ sN > M ,
so lim sn = +∞.

(ii) The proof is similar and is left to Exercise 10.5.
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10.5 Corollary.
If (sn) is a monotone sequence, then the sequence either converges,
diverges to +∞, or diverges to −∞. Thus lim sn is always meaningful
for monotone sequences.

Proof
Apply Theorems 10.2 and 10.4.

Let (sn) be a bounded sequence in R; it may or may not converge.
It is apparent from the definition of limit in 7.1 that the limiting
behavior of (sn) depends only on sets of the form {sn : n > N}. For
example, if lim sn exists, clearly it lies in the interval [uN , vN ] where

uN = inf{sn : n > N} and vN = sup{sn : n > N};

see Exercise 8.9. As N increases, the sets {sn : n > N} get smaller,
so we have

u1 ≤ u2 ≤ u3 ≤ · · · and v1 ≥ v2 ≥ v3 ≥ · · · ;
see Exercise 4.7(a). By Theorem 10.2 the limits u = limN→∞ uN
and v = limN→∞ vN both exist, and u ≤ v since uN ≤ vN for all N .
If lim sn exists then, as noted above, uN ≤ lim sn ≤ vN for all N ,
so we must have u ≤ lim sn ≤ v. The numbers u and v are useful
whether lim sn exists or not and are denoted lim inf sn and lim sup sn,
respectively.

10.6 Definition.
Let (sn) be a sequence in R. We define

lim sup sn = lim
N→∞

sup {sn : n > N} (1)

and

lim inf sn = lim
N→∞

inf {sn : n > N}. (2)

Note that in this definition we do not restrict (sn) to be bounded.
However, we adopt the following conventions. If (sn) is not bounded
above, sup{sn : n > N} = +∞ for all N and we decree lim sup sn =
+∞. Likewise, if (sn) is not bounded below, inf{sn : n > N} = −∞
for all N and we decree lim inf sn = −∞.
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We emphasize lim sup sn need not equal sup{sn : n ∈ N}, but
lim sup sn ≤ sup{sn : n ∈ N}. Some of the values sn may be much
larger than lim sup sn; lim sup sn is the largest value that infinitely
many sn’s can get close to. Similar remarks apply to lim inf sn. These
remarks will be clarified in Theorem 11.8 and §12, where we will give
a thorough treatment of lim inf’s and lim sup’s. For now, we need
a theorem that shows (sn) has a limit if and only if lim inf sn =
lim sup sn.

10.7 Theorem.
Let (sn) be a sequence in R.

(i) If lim sn is defined [as a real number, +∞ or −∞], then
lim inf sn = lim sn = lim sup sn.

(ii) If lim inf sn = lim sup sn, then lim sn is defined and lim sn =
lim inf sn = lim sup sn.

Proof
We use the notation uN = inf{sn : n > N}, vN = sup{sn : n > N},
u = lim uN = lim inf sn and v = lim vN = lim sup sn.

(i) Suppose lim sn = +∞. Let M be a positive real number. Then
there is a positive integer N so that

n > N implies sn > M.

Then uN = inf{sn : n > N} ≥ M . It follows that m > N
implies um ≥ M . In other words, the sequence (uN ) satisfies
the condition defining lim uN = +∞, i.e., lim inf sn = +∞.
Likewise lim sup sn = +∞.

The case lim sn = −∞ is handled in a similar manner.
Now suppose lim sn = s where s is a real number. Consider

ε > 0. There exists a positive integer N such that |sn − s| < ε
for n > N . Thus sn < s+ ε for n > N , so

vN = sup{sn : n > N} ≤ s+ ε.

Also, m > N implies vm ≤ s+ε, so lim sup sn = lim vm ≤ s+ε.
Since lim sup sn ≤ s+ ε for all ε > 0, no matter how small, we
conclude lim sup sn ≤ s = lim sn. A similar argument shows
lim sn ≤ lim inf sn. Since lim inf sn ≤ lim sup sn, we infer all
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three numbers are equal:

lim inf sn = lim sn = lim sup sn.

(ii) If lim inf sn = lim sup sn = +∞ it is easy to show lim sn =
+∞. And if lim inf sn = lim sup sn = −∞ it is easy to show
lim sn = −∞. We leave these two special cases to the reader.

Suppose, finally, that lim inf sn = lim sup sn = s where s is
a real number. We need to prove lim sn = s. Let ε > 0. Since
s = lim vN there exists a positive integer N0 such that

|s− sup{sn : n > N0}| < ε.

Thus sup{sn : n > N0} < s+ ε, so

sn < s+ ε for all n > N0. (1)

Similarly, there exists N1 such that |s− inf{sn :n > N1}| < ε,
hence inf{sn : n > N1} > s− ε, hence

sn > s− ε for all n > N1. (2)

From (1) and (2) we conclude

s− ε < sn < s+ ε for n > max{N0,N1},
equivalently

|sn − s| < ε for n > max{N0,N1}.
This proves lim sn = s as desired.

If (sn) converges, then lim inf sn = lim sup sn by the theorem just
proved, so for large N the numbers sup{sn : n > N} and inf{sn :
n > N} are close together. This implies that all the numbers in the
set {sn : n > N} are close to each other. This leads us to a concept of
great theoretical importance that will be used throughout the book.

10.8 Definition.
A sequence (sn) of real numbers is called a Cauchy sequence if

for each ε > 0 there exists a number N such that

m,n > N implies |sn − sm| < ε. (1)

Compare this definition with Definition 7.1.
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10.9 Lemma.
Convergent sequences are Cauchy sequences.

Proof
Suppose lim sn = s. The idea is that, since the terms sn are close to
s for large n, they also must be close to each other; indeed

|sn − sm| = |sn − s+ s− sm| ≤ |sn − s| + |s− sm|.
To be precise, let ε > 0. Then there exists N such that

n > N implies |sn − s| < ε

2
.

Clearly we may also write

m > N implies |sm − s| < ε

2
,

so

m,n > N implies |sn − sm| ≤ |sn − s| + |s− sm| < ε

2
+
ε

2
= ε.

Thus (sn) is a Cauchy sequence.

10.10 Lemma.
Cauchy sequences are bounded.

Proof
The proof is similar to that of Theorem 9.1. Applying Definition 10.8
with ε = 1 we obtain N in N so that

m,n > N implies |sn − sm| < 1.

In particular, |sn − sN+1| < 1 for n > N , so |sn| < |sN+1| + 1 for
n > N . If M = max{|sN+1| + 1, |s1|, |s2|, . . . , |sN |}, then |sn| ≤ M
for all n ∈ N.

The next theorem is very important because it shows that to
verify that a sequence converges it suffices to check it is a Cauchy
sequence, a property that does not involve the limit itself.

10.11 Theorem.
A sequence is a convergent sequence if and only if it is a Cauchy
sequence.
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Proof
The expression “if and only if” indicates that we have two assertions
to verify: (i) convergent sequences are Cauchy sequences, and (ii)
Cauchy sequences are convergent sequences. We already verified (i)
in Lemma 10.9. To check (ii), consider a Cauchy sequence (sn) and
note (sn) is bounded by Lemma 10.10. By Theorem 10.7 we need
only show

lim inf sn = lim sup sn. (1)

Let ε > 0. Since (sn) is a Cauchy sequence, there exists N so that

m,n > N implies |sn − sm| < ε.

In particular, sn < sm + ε for all m,n > N . This shows sm + ε is an
upper bound for {sn : n > N}, so vN = sup{sn : n > N} ≤ sm + ε
for m > N . This, in turn, shows vN − ε is a lower bound for {sm :
m > N}, so vN − ε ≤ inf{sm : m > N} = uN . Thus

lim sup sn ≤ vN ≤ uN + ε ≤ lim inf sn + ε.

Since this holds for all ε > 0, we have lim sup sn ≤ lim inf sn. The
opposite inequality always holds, so we have established (1).

The proof of Theorem 10.11 uses Theorem 10.7, and Theo-
rem 10.7 relies implicitly on the Completeness Axiom 4.4, since
without the completeness axiom it is not clear that lim inf sn and
lim sup sn are meaningful. The completeness axiom assures us that
the expressions sup{sn : n > N} and inf{sn : n > N} in Defini-
tion 10.6 are meaningful, and Theorem 10.2 [which itself relies on
the completeness axiom] assures us that the limits in Definition 10.6
also are meaningful.

Exercises on lim sup’s and lim inf’s appear in §§11 and 12.

Exercises

10.1 Which of the following sequences are increasing? decreasing? bounded?

(a) 1
n (b) (−1)n

n2

(c) n5 (d) sin(nπ7 )
(e) (−2)n (f) n

3n
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10.2 Prove Theorem 10.2 for bounded decreasing sequences.

10.3 For a decimal expansion K.d1d2d3d4 · · ·, let (sn) be defined as in
Discussion 10.3. Prove sn < K + 1 for all n ∈ N. Hint : 9

10 + 9
102 +

· · · + 9
10n = 1 − 1

10n for all n.

10.4 Discuss why Theorems 10.2 and 10.11 would fail if we restricted our
world of numbers to the set Q of rational numbers.

10.5 Prove Theorem 10.4(ii).

10.6 (a) Let (sn) be a sequence such that

|sn+1 − sn| < 2−n for all n ∈ N.

Prove (sn) is a Cauchy sequence and hence a convergent
sequence.

(b) Is the result in (a) true if we only assume |sn+1 − sn| < 1
n for all

n ∈ N?

10.7 Let S be a bounded nonempty subset of R such that supS is not in S.
Prove there is a sequence (sn) of points in S such that lim sn = supS.
See also Exercise 11.11.

10.8 Let (sn) be an increasing sequence of positive numbers and define
σn = 1

n (s1 + s2 + · · · + sn). Prove (σn) is an increasing sequence.

10.9 Let s1 = 1 and sn+1 = ( n
n+1 )s2n for n ≥ 1.

(a) Find s2, s3 and s4.

(b) Show lim sn exists.

(c) Prove lim sn = 0.

10.10 Let s1 = 1 and sn+1 = 1
3 (sn + 1) for n ≥ 1.

(a) Find s2, s3 and s4.

(b) Use induction to show sn >
1
2 for all n.

(c) Show (sn) is a decreasing sequence.

(d) Show lim sn exists and find lim sn.

10.11 Let t1 = 1 and tn+1 = [1 − 1
4n2 ] · tn for n ≥ 1.

(a) Show lim tn exists.

(b) What do you think lim tn is?
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10.12 Let t1 = 1 and tn+1 = [1 − 1
(n+1)2 ] · tn for n ≥ 1.

(a) Show lim tn exists.

(b) What do you think lim tn is?

(c) Use induction to show tn = n+1
2n .

(d) Repeat part (b).

§11 Subsequences

11.1 Definition.
Suppose (sn)n∈N is a sequence. A subsequence of this sequence is a
sequence of the form (tk)k∈N where for each k there is a positive
integer nk such that

n1 < n2 < · · · < nk < nk+1 < · · · (1)

and

tk = snk
. (2)

Thus (tk) is just a selection of some [possibly all] of the sn’s taken
in order.

Here are some alternative ways to approach this concept. Note
that (1) defines an infinite subset of N, namely {n1, n2, n3, . . .}. Con-
versely, every infinite subset of N can be described by (1). Thus a
subsequence of (sn) is a sequence obtained by selecting, in order, an
infinite subset of the terms.

For a more precise definition, recall we can view the sequence
(sn)n∈N as a function s with domain N; see §7. For the subset
{n1, n2, n3, . . .}, there is a natural function σ [lower case Greek sigma]
given by σ(k) = nk for k ∈ N. The function σ “selects” an infinite
subset of N, in order. The subsequence of s corresponding to σ is
simply the composite function t = s ◦ σ. That is,

tk = t(k) = s ◦ σ(k) = s(σ(k)) = s(nk) = snk
for k ∈ N. (3)

Thus a sequence t is a subsequence of a sequence s if and only if
t = s ◦ σ for some increasing function σ mapping N into N. We will
usually suppress the notation σ and often suppress the notation t
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C H A P T E R

...........................................

Integration

This chapter serves two purposes. It contains a careful development
of the Riemann integral, which is the integral studied in standard
calculus courses. It also contains an introduction to a generalization
of the Riemann integral called the Riemann-Stieltjes integral. The
generalization is easy and natural. Moreover, the Riemann-Stieltjes
integral is an important tool in probability and statistics, and other
areas of mathematics.

§32 The Riemann Integral

The theory of the Riemann integral is no more difficult than several
other topics dealt with in this book. The one drawback is that it
involves some technical notation and terminology.

32.1 Definition.
Let f be a bounded function on a closed interval [a, b].1 For S ⊆ [a, b],
we adopt the notation

1Here and elsewhere in this chapter, we assume a < b.

K.A. Ross, Elementary Analysis: The Theory of Calculus,
Undergraduate Texts in Mathematics, DOI 10.1007/978-1-4614-6271-2 6,
© Springer Science+Business Media New York 2013

269
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M(f, S) = sup{f(x) : x ∈ S} and m(f, S) = inf{f(x) : x ∈ S}.
A partition of [a, b] is any finite ordered subset P having the form

P = {a = t0 < t1 < · · · < tn = b}.
The upper Darboux sum U(f, P ) of f with respect to P is the sum

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) · (tk − tk−1)

and the lower Darboux sum L(f, P ) is

L(f, P ) =
n∑

k=1

m(f, [tk−1, tk]) · (tk − tk−1).

Note

U(f, P ) ≤
n∑

k=1

M(f, [a, b]) · (tk − tk−1) = M(f, [a, b]) · (b− a);

likewise L(f, P ) ≥ m(f, [a, b]) · (b− a), so

m(f, [a, b]) · (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(f, [a, b]) · (b− a). (1)

The upper Darboux integral U(f) of f over [a, b] is defined by

U(f) = inf{U(f, P ) : P is a partition of [a, b]}
and the lower Darboux integral is

L(f) = sup{L(f, P ) : P is a partition of [a, b]}.
In view of (1), U(f) and L(f) are real numbers.

We will prove in Theorem 32.4 that L(f) ≤ U(f). This is not
obvious from (1). [Why?] We say f is integrable on [a, b] provided

L(f) = U(f). In this case, we write
∫ b
a f or

∫ b
a f(x) dx for this

common value: ∫ b

a
f =

∫ b

a
f(x) dx = L(f) = U(f). (2)

Specialists call this integral the Darboux integral. Riemann’s def-
inition of the integral is a little different [Definition 32.8], but we will
show in Theorem 32.9 that the definitions are equivalent. For this
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FIGURE 32.1

reason, we will follow customary usage and call the integral defined
above the Riemann integral.

For nonnegative functions,
∫ b
a f is interpreted as the area of the

region under the graph of f [see Fig. 32.1] for the following reason.
Each lower Darboux sum represents the area of a union of rectangles
inside the region, and each upper Darboux sum represents the area of
a union of rectangles that contains the region. Moreover,

∫ b
a f is the

unique number that is larger than or equal to all lower Darboux sums
and smaller than or equal to all upper Darboux sums. Figure 19.2
on page 145 illustrates the situation for [a, b] = [0, 1] and

P =

{
0 <

1

n
<

2

n
< · · · < n− 1

n
< 1

}
.

Example 1
The simplest function whose integral is not obvious is f(x) = x2.
Consider f on the interval [0, b] where b > 0. For a partition

P = {0 = t0 < t1 < · · · < tn = b},

we have

U(f, P ) =

n∑
k=1

sup{x2 : x ∈ [tk−1, tk]} · (tk− tk−1) =

n∑
k=1

t2k(tk− tk−1).
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If we choose tk = kb
n , then we can use Exercise 1.1 to calculate

U(f, P ) =

n∑
k=1

k2b2

n2

(
b

n

)
=
b3

n3

n∑
k=1

k2 =
b3

n3
· n(n+ 1)(2n+ 1)

6
.

For large n, this is close to b3

3 , so we conclude U(f) ≤ b3

3 . For the
same partition we find

L(f, P ) =
n∑

k=1

(k − 1)2b2

n2

(
b

n

)
=
b3

n3
· (n− 1)(n)(2n− 1)

6
,

so L(f) ≥ b3

3 . Therefore f(x) = x2 is integrable on [0, b] and

∫ b

0
x2 dx =

b3

3
.

Of course, any calculus student could have calculated this inte-
gral using a formula that is based on the Fundamental Theorem of
Calculus; see Example 1 in §34.

Example 2
Consider the interval [a, b], where a < b, and let f(x) = 1 for rational
x in [a, b], and let f(x) = 0 for irrational x in [a, b]. For any partition

P = {a = t0 < t1 < · · · < tn = b},
we have

U(f, P ) =
n∑

k=1

M(f, [tk−1, tk]) · (tk − tk−1) =
n∑

k=1

1 · (tk− tk−1) = b−a

and

L(f, P ) =
n∑

k=1

0 · (tk − tk−1) = 0.

It follows that U(f) = b − a and L(f) = 0. The upper and lower
Darboux integrals for f do not agree, so f is not integrable!

We next develop some properties of the integral.
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32.2 Lemma.
Let f be a bounded function on [a, b]. If P and Q are partitions of
[a, b] and P ⊆ Q, then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ). (1)

Proof
The middle inequality is obvious. The proofs of the first and third
inequalities are similar, so we will prove

L(f, P ) ≤ L(f,Q). (2)

An induction argument [Exercise 32.4] shows we may assume
Q has only one more point, say u, than P . If

P = {a = t0 < t1 < · · · < tn = b},
then

Q = {a = t0 < t1 < · · · < tk−1 < u < tk < · · · < tn = b}
for some k ∈ {1, 2, . . . , n}. The lower Darboux sums for P and Q
are the same except for the terms involving tk−1 or tk. In fact, their
difference is

L(f, Q)− L(f, P ) = m(f, [tk−1, u]) · (u− tk−1) +m(f, [u, tk]) · (tk − u)

−m(f, [tk−1, tk]) · (tk − tk−1). (3)

To establish (2) it suffices to show this quantity is nonnegative. Using
Exercise 4.7(a), we see

m(f, [tk−1, tk]) · (tk − tk−1)
= m(f, [tk−1, tk]) · {(tk − u) + (u− tk−1)}
≤ m(f, [u, tk]) · (tk − u) +m(f, [tk−1, u]) · (u− tk−1).

32.3 Lemma.
If f is a bounded function on [a, b], and if P and Q are partitions of
[a, b], then L(f, P ) ≤ U(f,Q).

Proof
The set P ∪ Q is also a partition of [a, b]. Since P ⊆ P ∪ Q and
Q ⊆ P ∪Q, we can apply Lemma 32.2 to obtain

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).
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32.4 Theorem.
If f is a bounded function on [a, b], then L(f) ≤ U(f).

Proof
Fix a partition P of [a, b]. Lemma 32.3 shows L(f, P ) is a lower
bound for the set

{U(f,Q) : Q is a partition of [a, b]}.
Therefore L(f, P ) is less than or equal to the greatest lower bound
[infimum!] of this set. That is

L(f, P ) ≤ U(f). (1)

Now (1) shows that U(f) is an upper bound for the set

{L(f, P ) : P is a partition of [a, b]},
so U(f) ≥ L(f).

Note that Theorem 32.4 also follows from Lemma 32.3 and Ex-
ercise 4.8; see Exercise 32.5. The next theorem gives a “Cauchy
criterion” for integrability.

32.5 Theorem.
A bounded function f on [a, b] is integrable if and only if for each
ε > 0 there exists a partition P of [a, b] such that

U(f, P ) − L(f, P ) < ε. (1)

Proof
Suppose first that f is integrable and consider ε > 0. There exist
partitions P1 and P2 of [a, b] satisfying

L(f, P1) > L(f) − ε

2
and U(f, P2) < U(f) +

ε

2
.

For P = P1 ∪ P2, we apply Lemma 32.2 to obtain

U(f, P ) − L(f, P ) ≤ U(f, P2) − L(f, P1)

< U(f) +
ε

2
−
[
L(f) − ε

2

]
= U(f) − L(f) + ε.

Since f is integrable, U(f) = L(f), so (1) holds.
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Conversely, suppose for ε > 0 the inequality (1) holds for some
partition P . Then we have

U(f) ≤ U(f, P ) = U(f, P ) − L(f, P ) + L(f, P )

< ε+ L(f, P ) ≤ ε+ L(f).

Since ε is arbitrary, we conclude U(f) ≤ L(f). Hence we have U(f) =
L(f) by Theorem 32.4, i.e., f is integrable.

The remainder of this section is devoted to establishing the
equivalence of Riemann’s and Darboux’s definitions of integrabil-
ity. Subsequent sections will depend only on items Definition 32.1
through Theorem 32.5. Therefore the reader who is content with the
Darboux integral in Definition 32.1 can safely proceed directly to the
next section.

32.6 Definition.
The mesh of a partition P is the maximum length of the subintervals
comprising P . Thus if

P = {a = t0 < t1 < · · · < tn = b},
then

mesh(P ) = max{tk − tk−1 : k = 1, 2, . . . , n}.

Here is another “Cauchy criterion” for integrability.

32.7 Theorem.
A bounded function f on [a, b] is integrable if and only if for each
ε > 0 there exists a δ > 0 such that

mesh(P ) < δ implies U(f, P ) − L(f, P ) < ε (1)

for all partitions P of [a, b].

Proof
The ε–δ condition in (1) implies integrability by Theorem 32.5.

Conversely, suppose f is integrable on [a, b]. Let ε > 0 and select
a partition

P0 = {a = u0 < u1 < · · · < um = b}
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of [a, b] such that

U(f, P0) − L(f, P0) <
ε

2
. (2)

Since f is bounded, there exists B > 0 such that |f(x)| ≤ B for all
x ∈ [a, b]. Let δ = ε

8mB ; m is the number of intervals comprising P0.
To verify (1), we consider any partition

P = {a = t0 < t1 < · · · < tn = b}
with mesh(P ) < δ. Let Q = P ∪ P0. If Q has one more element
than P , then a glance at (3) in the proof of Lemma 32.2 leads us to

L(f,Q) −L(f, P ) ≤ B ·mesh(P )− (−B) ·mesh(P ) = 2B ·mesh(P ).

Since Q has at most m elements that are not in P , an induction
argument shows

L(f,Q) − L(f, P ) ≤ 2mB · mesh(P ) < 2mBδ =
ε

4
.

By Lemma 32.2 we have L(f, P0) ≤ L(f,Q), so

L(f, P0) − L(f, P ) <
ε

4
.

Similarly

U(f, P ) − U(f, P0) <
ε

4
,

so

U(f, P ) − L(f, P ) < U(f, P0) − L(f, P0) +
ε

2
.

Now (2) implies U(f, P )−L(f, P ) < ε and we have verified (1).

Now we give Riemann’s definition of integrability.

32.8 Definition.
Let f be a bounded function on [a, b], and let P = {a = t0 < t1 <
· · · < tn = b} be a partition of [a, b]. A Riemann sum of f associated
with the partition P is a sum of the form

n∑
k=1

f(xk)(tk − tk−1)
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where xk ∈ [tk−1, tk] for k = 1, 2, . . . , n. The choice of xk’s is quite
arbitrary, so there are infinitely many Riemann sums associated with
a single function and partition.

The function f is Riemann integrable on [a, b] if there exists a
number r with the following property. For each ε > 0 there exists
δ > 0 such that

|S − r| < ε (1)

for every Riemann sum S of f associated with a partition P having
mesh(P ) < δ. The number r is the Riemann integral of f on [a, b]

and will be provisionally written as R ∫ b
a f .

32.9 Theorem.
A bounded function f on [a, b] is Riemann integrable if and only if
it is [Darboux] integrable, in which case the values of the integrals
agree.

Proof
Suppose first that f is [Darboux] integrable on [a, b] in the sense of
Definition 32.1. Let ε > 0, and let δ > 0 be chosen so that (1) of
Theorem 32.7 holds. We show∣∣∣∣S −

∫ b

a
f

∣∣∣∣ < ε (1)

for every Riemann sum

S =
n∑

k=1

f(xk)(tk − tk−1)

associated with a partition P having mesh(P ) < δ. Clearly we have
L(f, P ) ≤ S ≤ U(f, P ), so (1) follows from the inequalities

U(f, P ) < L(f, P ) + ε ≤ L(f) + ε =

∫ b

a
f + ε

and

L(f, P ) > U(f, P ) − ε ≥ U(f) − ε =

∫ b

a
f − ε.
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This proves (1); hence f is Riemann integrable and

R
∫ b

a
f =

∫ b

a
f.

Now suppose f is Riemann integrable in the sense of Defini-
tion 32.8, and consider ε > 0. Let δ > 0 and r be as given in
Definition 32.8. Select any partition

P = {a = t0 < t1 < · · · < tn = b}

with mesh(P ) < δ, and for each k = 1, 2, . . . , n, select xk in [tk−1, tk]
so that

f(xk) < m(f, [tk−1, tk]) + ε.

The Riemann sum S for this choice of xk’s satisfies

S ≤ L(f, P ) + ε(b− a)

as well as

|S − r| < ε.

It follows that

L(f) ≥ L(f, P ) ≥ S − ε(b− a) > r − ε− ε(b− a).

Since ε is arbitrary, we have L(f) ≥ r. A similar argument shows
U(f) ≤ r. Since L(f) ≤ U(f), we see L(f) = U(f) = r. This shows
f is [Darboux] integrable and

∫ b

a
f = r = R

∫ b

a
f.

32.10 Corollary.
Let f be a bounded Riemann integrable function on [a, b]. Suppose
(Sn) is a sequence of Riemann sums, with corresponding partitions
Pn, satisfying limn mesh(Pn) = 0. Then the sequence (Sn) converges

to
∫ b
a f .
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Proof
Let ε > 0. There is a δ > 0 so that if S is a Riemann sum with
corresponding partition P , and if mesh(P ) < δ, then

∣∣∣∣S −
∫ b

a
f

∣∣∣∣ < ε.

Choose N so that mesh(Pn) < δ for n > N . Then

∣∣∣∣Sn −
∫ b

a
f

∣∣∣∣ < ε for n > N.

Since ε > 0 is arbitrary, this shows limn Sn =
∫ b
a f .

32.11 Remark.
I recently had occasion to use the following simple observation. If
one ignores the end intervals of the partitions, the “almost Riemann
sums” so obtained still converge to the integral; see [59]. This arose
because the intervals had the form [a, b], but the partition points had
the form k

n . Thus the partition points were nice and equally spaced,
except for the end ones.

Exercises

32.1 Find the upper and lower Darboux integrals for f(x) = x3 on the
interval [0, b]. Hint : Exercise 1.3 and Example 1 in §1 will be useful.

32.2 Let f(x) = x for rational x and f(x) = 0 for irrational x.

(a) Calculate the upper and lower Darboux integrals for f on the
interval [0, b].

(b) Is f integrable on [0, b]?

32.3 Repeat Exercise 32.2 for g where g(x) = x2 for rational x and
g(x) = 0 for irrational x.

32.4 Supply the induction argument needed in the proof of Lemma 32.2.

32.5 Use Exercise 4.8 to prove Theorem 32.4. Specify the sets S and T in
this case.
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32.6 Let f be a bounded function on [a, b]. Suppose there exist sequences
(Un) and (Ln) of upper and lower Darboux sums for f such that

lim(Un − Ln) = 0. Show f is integrable and
∫ b

a
f = limUn = limLn.

32.7 Let f be integrable on [a, b], and suppose g is a function on [a, b]
such that g(x) = f(x) except for finitely many x in [a, b]. Show g is

integrable and
∫ b

a f =
∫ b

a g. Hint: First reduce to the case where f is
the function identically equal to 0.

32.8 Show that if f is integrable on [a, b], then f is integrable on every
interval [c, d] ⊆ [a, b].

§33 Properties of the Riemann Integral

In this section we establish some basic properties of the Riemann
integral and we show many familiar functions, including piece-
wise continuous and piecewise monotonic functions, are Riemann
integrable.

A function is monotonic on an interval if it is either increasing
or decreasing on the interval; see Definition 29.6.

33.1 Theorem.
Every monotonic function f on [a, b] is integrable.

Proof
We assume f is increasing on [a, b] and leave the decreasing case to
Exercise 33.1. We also assume f(a) < f(b), since otherwise f would
be a constant function. Since f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b],
f is clearly bounded on [a, b]. In order to apply Theorem 32.5, let
ε > 0 and select a partition P = {a = t0 < t1 < · · · < tn = b} with
mesh less than ε

f(b)−f(a) . Then

U(f, P )− L(f, P ) =
n∑

k=1

{M(f, [tk−1, tk]) −m(f, [tk−1, tk])} · (tk − tk−1)

=
n∑

k=1

[f(tk)− f(tk−1)] · (tk − tk−1).
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Since mesh(P ) < ε
f(b)−f(a) , we have

U(f, P ) − L(f, P ) <
n∑

k=1

[f(tk) − f(tk−1)] · ε

f(b) − f(a)

= [f(b) − f(a)] · ε

f(b) − f(a)
= ε.

Theorem 32.5 now shows f is integrable.

33.2 Theorem.
Every continuous function f on [a, b] is integrable.

Proof
Again, in order to apply Theorem 32.5, consider ε > 0. Since f is
uniformly continuous on [a, b] by Theorem 19.2, there exists δ > 0
such that

x, y ∈ [a, b] and |x− y| < δ imply |f(x) − f(y)| < ε

b− a
. (1)

Consider any partition P = {a = t0 < t1 < · · · < tn = b} where

max{tk − tk−1 : k = 1, 2, . . . , n} < δ.

Since f assumes its maximum and minimum on each interval
[tk−1, tk] by Theorem 18.1, it follows from (1) above that

M(f, [tk−1, tk]) −m(f, [tk−1, tk]) <
ε

b− a

for each k. Therefore we have

U(f, P ) − L(f, P ) <

n∑
k=1

ε

b− a
(tk − tk−1) = ε,

and Theorem 32.5 shows f is integrable.

33.3 Theorem.
Let f and g be integrable functions on [a, b], and let c be a real
number. Then

(i) cf is integrable and
∫ b
a cf = c

∫ b
a f ;

(ii) f + g is integrable and
∫ b
a (f + g) =

∫ b
a f +

∫ b
a g.
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Exercise 33.8 shows fg, max(f, g) and min(f, g) are also inte-
grable, but there are no formulas giving their integrals in terms of∫ b
a f and

∫ b
a g.

Proof
The proof of (i) involves three cases: c > 0, c = −1, and c < 0. Of
course, (i) is obvious for c = 0.

Let c > 0 and consider a partition

P = {a = t0 < t1 < · · · < tn = b}
of [a, b]. A simple exercise [Exercise 33.2] shows

M(cf, [tk−1, tk]) = c ·M(f, [tk−1, tk])

for all k, so U(cf, P ) = c · U(f, P ). Another application of the
same exercise shows U(cf) = c · U(f). Similar arguments show
L(cf) = c · L(f). Since f is integrable, we have L(cf) = c ·L(f) = c ·
U(f) = U(cf). Hence cf is integrable and

∫ b

a
cf = U(cf) = c · U(f) = c

∫ b

a
f, c > 0. (1)

Now we deal with the case c = −1. Exercise 5.4 implies
U(−f, P ) = −L(f, P ) for all partitions P of [a, b]. Hence we have

U(−f) = inf{U(−f, P ) : P is a partition of [a, b]}
= inf{−L(f, P ) : P is a partition of [a, b]}
= − sup{L(f, P ) : P is a partition of [a, b]} = −L(f).

Replacing f by −f , we also obtain L(−f) = −U(f). Since f is inte-
grable, U(−f) = −L(f) = −U(f) = L(−f); hence −f is integrable
and ∫ b

a
(−f) = −

∫ b

a
f. (2)

The case c < 0 is handled by applying (2), and then (1) to −c:
∫ b

a
cf = −

∫ b

a
(−c)f = −(−c)

∫ b

a
f = c

∫ b

a
f.
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To prove (ii) we will again use Theorem 32.5. Let ε > 0. By
Theorem 32.5 there exist partitions P1 and P2 of [a, b] such that

U(f, P1) − L(f, P1) <
ε

2
and U(g, P2) − L(g, P2) <

ε

2
.

Lemma 32.2 shows that if P = P1 ∪ P2, then

U(f, P ) − L(f, P ) <
ε

2
and U(g, P ) − L(g, P ) <

ε

2
. (3)

For any subset S of [a, b], we have

inf{f(x) + g(x) : x ∈ S} ≥ inf{f(x) : x ∈ S} + inf{g(x) : x ∈ S},
i.e., m(f + g, S) ≥ m(f, S) +m(g, S). It follows that

L(f + g, P ) ≥ L(f, P ) + L(g, P )

and similarly we have

U(f + g, P ) ≤ U(f, P ) + U(g, P ).

Therefore from (3) we obtain

U(f + g, P ) − L(f + g, P ) < ε.

Theorem 32.5 now shows f + g is integrable. Since
∫ b

a

(f + g) = U(f + g) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P )

< L(f, P ) + L(g, P ) + ε ≤ L(f) + L(g) + ε =

∫ b

a

f +

∫ b

a

g + ε

and∫ b

a

(f + g) = L(f + g) ≥ L(f + g, P ) ≥ L(f, P ) + L(g, P )

> U(f, P ) + U(g, P ) − ε ≥ U(f) + U(g) − ε =

∫ b

a

f +

∫ b

a

g − ε,

we see that ∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.
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33.4 Theorem.
(i) If f and g are integrable on [a, b] and if f(x) ≤ g(x) for x in

[a, b], then
∫ b
a f ≤ ∫ b

a g.
(ii) If g is a continuous nonnegative function on [a, b] and if∫ b

a g = 0, then g is identically 0 on [a, b].

Proof
(i) By Theorem 33.3, h = g − f is integrable on [a, b]. Since

h(x) ≥ 0 for all x ∈ [a, b], it is clear that L(h, P ) ≥ 0 for

all partitions P of [a, b], so
∫ b
a h = L(h) ≥ 0. Applying

Theorem 33.3 again, we see
∫ b

a
g =

∫ b

a
f +

∫ b

a
h ≥

∫ b

a
f.

(ii) Otherwise, since g is continuous, there is a nonempty interval
(c, d) ⊆ [a, b] and α > 0 satisfying g(x) ≥ α/2 for x ∈ (c, d).
Then ∫ b

a
g ≥

∫ d

c
g ≥ α

2
(d− c) > 0,

contradicting
∫ b
a g = 0.

33.5 Theorem.
If f is integrable on [a, b], then |f | is integrable on [a, b] and∣∣∣∣

∫ b

a
f

∣∣∣∣ ≤
∫ b

a
|f |. (1)

Proof
This follows easily from Theorem 33.4(i) provided we know |f | is
integrable on [a, b]. In fact, −|f | ≤ f ≤ |f |; therefore

−
∫ b

a
|f | ≤

∫ b

a
f ≤

∫ b

a
|f |,

which implies (1).
We now show |f | is integrable, a point that was conveniently

glossed over in Exercise 25.1. For any subset S of [a, b], we have

M(|f |, S) −m(|f |, S) ≤M(f, S) −m(f, S) (2)
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by Exercise 33.6. From (2) it follows that

U(|f |, P ) − L(|f |, P ) ≤ U(f, P ) − L(f, P ) (3)

for all partitions P of [a, b]. By Theorem 32.5, for each ε > 0 there
exists a partition P such that

U(f, P ) − L(f, P ) < ε.

In view of (3), the same remark applies to |f |, so |f | is integrable by
Theorem 32.5.

33.6 Theorem.
Let f be a function defined on [a, b]. If a < c < b and f is integrable
on [a, c] and on [c, b], then f is integrable on [a, b] and

∫ b

a
f =

∫ c

a
f +

∫ b

c
f. (1)

Proof
Since f is bounded on both [a, c] and [c, b], f is bounded on [a, b]. In
this proof we will decorate upper and lower sums so that it will be
clear which intervals we are dealing with. Let ε > 0. By Theorem 32.5
there exist partitions P1 and P2 of [a, c] and [c, b] such that

U c
a(f, P1) − Lc

a(f, P1) <
ε

2
and U b

c (f, P2) − Lb
c(f, P2) <

ε

2
.

The set P = P1 ∪ P2 is a partition of [a, b], and it is obvious that

U b
a(f, P ) = U c

a(f, P1) + U b
c (f, P2) (2)

with a similar identity for lower sums. It follows that

U b
a(f, P ) − Lb

a(f, P ) < ε,

so f is integrable on [a, b] by Theorem 32.5. Also (1) holds because

∫ b

a
f ≤ U b

a(f, P ) = U c
a(f, P1) + U b

c (f, P2)

< Lc
a(f, P1) + Lb

c(f, P2) + ε ≤
∫ c

a
f +

∫ b

c
f + ε

and similarly
∫ b
a f >

∫ c
a f +

∫ b
c f − ε.
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Most functions encountered in calculus and analysis are covered
by the next definition. However, see Exercises 33.10–33.12.

33.7 Definition.
A function f on [a, b] is piecewise monotonic if there is a partition

P = {a = t0 < t1 < · · · < tn = b}

of [a, b] such that f is monotonic on each interval (tk−1, tk). The
function f is piecewise continuous if there is a partition P of [a, b]
such that f is uniformly continuous on each interval (tk−1, tk).

33.8 Theorem.
If f is a piecewise continuous function or a bounded piecewise
monotonic function on [a, b], then f is integrable on [a, b].

Proof
Let P be the partition described in Definition 33.7. Consider a fixed
interval [tk−1, tk]. If f is piecewise continuous, then its restriction to
(tk−1, tk) can be extended to a continuous function fk on [tk−1, tk]
by Theorem 19.5. If f is piecewise monotonic, then its restriction to
(tk−1, tk) can be extended to a monotonic function fk on [tk−1, tk];
for example, if f is increasing on (tk−1, tk), simply define

fk(tk) = sup{f(x) : x ∈ (tk−1, tk)}

and

fk(tk−1) = inf{f(x) : x ∈ (tk−1, tk)}.

In either case, fk is integrable on [tk−1, tk] by Theorem 33.1 or 33.2.
Since f agrees with fk on [tk−1, tk] except possibly at the endpoints,
Exercise 32.7 shows f is also integrable on [tk−1, tk]. Now Theo-
rem 33.6 and a trivial induction argument show f is integrable on
[a, b].

We close this section with a simple but useful result.
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33.9 Intermediate Value Theorem for Integrals.
If f is a continuous function on [a, b], then for at least one x in (a, b)
we have

f(x) =
1

b− a

∫ b

a
f.

Proof
Let M and m be the maximum and minimum values of f on [a, b].

If m = M , then f is a constant function and f(x) = 1
b−a

∫ b
a f for

all x ∈ [a, b]. Otherwise, m < M and by Theorem 18.1, there exist
distinct x0 and y0 in [a, b] satisfying f(x0) = m and f(y0) = M . Since
each function M −f and f −m is nonnegative and not identically 0,
Theorem 33.4(ii) shows

∫ b
a m <

∫ b
a f <

∫ b
a M . Thus

m <
1

b− a

∫ b

a
f < M,

and by the Intermediate Value Theorem 18.2 for continuous func-
tions, we have f(x) = 1

b−a

∫ b
a f for some x between x0 and y0. Since

x is in (a, b), this completes the proof.

33.10 Discussion.
An important question concerns when one can interchange limits and
integrals, i.e., when is

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞ fn(x) dx (1)

true? By Theorems 24.3 and 25.2, if the fns are continuous and
converge uniformly to f = limn→∞ fn on [a, b], then f is continuous
and (1) holds. It turns out that if each fn is just Riemann integrable
and fn → f uniformly, then f is Riemann integrable and (1) holds;
see Exercise 33.9. What happens if fn → f pointwise on [a, b]? One
problem is that f need not be integrable even if it is bounded and
each fn is integrable.

Consider, for example, the non-integrable function f in Exam-
ple 2 on page 272: f(x) = 1 for rational x in [a, b] and f(x) = 0 for
irrational x in [a, b]. Let (xk)k∈N be an enumeration of the rationals
in [a, b], and define fn(xk) = 1 for 1 ≤ k ≤ n and fn(x) = 0 for
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all other x in [a, b]. Then fn → f pointwise on [a, b], and each fn is
integrable.

This example leaves open the possibility that (1) will hold pro-
vided all the functions fn and the limit function f are integrable.
However, Exercise 33.15 provides an example of a sequence (fn) of
functions on [0, 1] converging pointwise to a function f , with all the
functions integrable, and yet (1) does not hold. Nevertheless, there
is an important theorem that does apply to sequences of functions
that converge pointwise.

33.11 Dominated Convergence Theorem.
Suppose (fn) is a sequence of integrable functions on [a, b] and fn →
f pointwise where f is an integrable function on [a, b]. If there exists
an M > 0 such that |fn(x)| ≤M for all n and all x in [a, b], then

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞ fn(x) dx.

We omit the proof. An elementary proof of the Dominated Con-
vergence Theorem is given by Jonathan W. Lewin [42]. Here is a
corollary.

33.12 Monotone Convergence Theorem.
Suppose (fn) is a sequence of integrable functions on [a, b] such that
f1(x) ≤ f2(x) ≤ · · · for all x in [a, b]. Suppose also that fn → f
pointwise where f is an integrable function on [a, b]. Then

lim
n→∞

∫ b

a
fn(x) dx =

∫ b

a
lim
n→∞ fn(x) dx.

This follows from the Dominated Convergence Theorem, because
there exists an M > 0 such that |f1(x)| ≤ M and also |f(x)| ≤ M
for all x in [a, b]. This implies |fn(x)| ≤M for all n and all x in [a, b],
since −M ≤ f1(x) ≤ fn(x) ≤M for all x.

Our version of the Dominated Convergence Theorem is a spe-
cial case of a much more general theorem, which is usually stated
and proved for the family of all “Lebesgue integrable functions,”
not just for Riemann integrable functions. There is also a Monotone
Convergence Theorem for Lebesgue integrable functions, but in that
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generality it does not follow immediately from the Dominated Con-
vergence Theorem, because in that setting integrable functions need
not be bounded. An elementary proof of the Monotone Convergence
Theorem is proved for Riemann integrable functions, without resort
to Lebesgue theory, by Brian S. Thomson [67].

Exercises

33.1 Complete the proof of Theorem 33.1 by showing that a decreasing
function on [a, b] is integrable.

33.2 This exercise could have appeared just as easily in §4. Let S be a
nonempty bounded subset of R. For fixed c > 0, let cS = {cs : s ∈ S}.
Show sup(cS) = c · sup(S) and inf(cS) = c · inf(S).

33.3 A function f on [a, b] is called a step function if there exists a partition
P = {a = u0 < u1 < · · · < cm = b} of [a, b] such that f is constant
on each interval (uj−1, uj), say f(x) = cj for x in (uj−1, uj).

(a) Show that a step function f is integrable and evaluate
∫ b

a
f .

(b) Evaluate the integral
∫ 4

0 P (x)dx for the postage-stamp function
P in Exercise 17.16.

33.4 Give an example of a function f on [0, 1] that is not integrable for
which |f | is integrable. Hint : Modify Example 2 in §32.

33.5 Show | ∫ 2π

−2π x
2 sin8(ex) dx| ≤ 16π3

3 .

33.6 Prove (2) in the proof of Theorem 33.5. Hint : For x0, y0 ∈ S, we have
|f(x0)| − |f(y0)| ≤ |f(x0) − f(y0)| ≤M(f, S) −m(f, S).

33.7 Let f be a bounded function on [a, b], so that there exists B > 0 such
that |f(x)| ≤ B for all x ∈ [a, b].

(a) Show

U(f2, P ) − L(f2, P ) ≤ 2B[U(f, P ) − L(f, P )]

for all partitions P of [a, b]. Hint : f(x)2 − f(y)2 = [f(x) + f(y)] ·
[f(x) − f(y)].

(b) Show that if f is integrable on [a, b], then f2 also is integrable
on [a, b].
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33.8 Let f and g be integrable functions on [a, b].

(a) Show fg is integrable on [a, b]. Hint : Use Exercise 33.7 and 4fg =
(f + g)2 − (f − g)2.

(b) Show max(f, g) and min(f, g) are integrable on [a, b]. Hint :
Exercise 17.8.

33.9 Let (fn) be a sequence of integrable functions on [a, b], and suppose
fn → f uniformly on [a, b]. Prove f is integrable and

∫ b

a

f = lim
n→∞

∫ b

a

fn.

Compare this result with Theorems 25.2 and 33.11.

33.10 Let f(x) = sin 1
x for x �= 0 and f(0) = 0. Show f is integrable on

[−1, 1]. Hint : See the answer to Exercise 33.11(c).

33.11 Let f(x) = x sgn(sin 1
x ) for x �= 0 and f(0) = 0.

(a) Show f is not piecewise continuous on [−1, 1].

(b) Show f is not piecewise monotonic on [−1, 1].

(c) Show f is integrable on [−1, 1].

33.12 Let f be the function described in Exercise 17.14.

(a) Show f is not piecewise continuous or piecewise monotonic on
any interval [a, b].

(b) Show f is integrable on every interval [a, b] and
∫ b

a f = 0.

33.13 Suppose f and g are continuous functions on [a, b] such that
∫ b

a
f =∫ b

a
g. Prove there exists x in (a, b) such that f(x) = g(x).

33.14 (a) Prove the following generalization of the Intermediate Value The-
orem for Integrals. If f and g are continuous functions on [a, b]
and g(t) ≥ 0 for all t ∈ [a, b], then there exists x in (a, b) such
that ∫ b

a

f(t)g(t) dt = f(x)

∫ b

a

g(t) dt.

(b) Show Theorem 33.9 is a special case of part (a).

(c) Does the conclusion in part (a) hold if [a, b] = [−1, 1] and f(t) =
g(t) = t for all t?
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33.15 For integers n ≥ 3, define the function fn on [0, 1] by the rules:

fn(0) = fn

(
2

n

)
= fn(1) = 0 and fn

(
1

n

)
= n,

and so that its graph is a straight line from (0, 0) to ( 1
n , n), from

( 1
n , n) to ( 2

n , 0), and from ( 2
n , 0) to (1, 0).

(a) Graph f3, f4 and f5.

(b) Show fn → 0 pointwise on [0, 1].

(c) Show limn

∫ 1

0 fn(x) dx �= ∫ 1

0 0 dx. Why doesn’t this contradict
the Dominated Convergence Theorem?

§34 Fundamental Theorem of Calculus

There are two versions of the Fundamental Theorem of Calculus.
Each says, roughly speaking, that differentiation and integration are
inverse operations. In fact, our first version [Theorem 34.1] says “the
integral of the derivative of a function is given by the function,”
and our second version [Theorem 34.3] says “the derivative of the
integral of a continuous function is the function.” It is somewhat
traditional for books to prove our second version first and use it to
prove our first version, although some books do avoid this approach.
F. Cunningham, Jr. [18] offers some good reasons for avoiding the
traditional approach:

(a) Theorem 34.3 implies Theorem 34.1 only for functions g whose
derivative g′ is continuous; see Exercise 34.1.

(b) Making Theorem 34.1 depend on Theorem 34.3 obscures the
fact that the two theorems say different things, have different
applications, and may leave the impression Theorem 34.3 is the
fundamental theorem.

(c) The need for Theorem 34.1 in calculus is immediate and easily
motivated.

In what follows, we say a function h defined on (a, b) is integrable
on [a, b] if every extension of h to [a, b] is integrable. In view of
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Exercise 32.7, the value
∫ b
a h will not depend on the values of the

extensions at a or b.

34.1 Fundamental Theorem of Calculus I.
If g is a continuous function on [a, b] that is differentiable on (a, b),
and if g′ is integrable on [a, b], then

∫ b

a
g′ = g(b) − g(a). (1)

Proof
Let ε > 0. By Theorem 32.5, there exists a partition P = {a = t0 <
t1 < · · · < tn = b} of [a, b] such that

U(g′, P ) − L(g′, P ) < ε. (2)

We apply the Mean Value Theorem 29.3 to each interval [tk−1, tk] to
obtain xk in (tk−1, tk) for which

(tk − tk−1)g
′(xk) = g(tk) − g(tk−1).

Hence we have

g(b) − g(a) =
n∑

k=1

[g(tk) − g(tk−1)] =
n∑

k=1

g′(xk)(tk − tk−1).

It follows that

L(g′, P ) ≤ g(b) − g(a) ≤ U(g′, P ); (3)

see Definition 32.1. Since

L(g′, P ) ≤
∫ b

a
g′ ≤ U(g′, P ),

inequalities (2) and (3) imply∣∣∣∣
∫ b

a
g′ − [g(b) − g(a)]

∣∣∣∣ < ε.

Since ε is arbitary, (1) holds.

The integration formulas in calculus all rely in the end on
Theorem 34.1.
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Example 1
If g(x) = xn+1

n+1 , then g′(x) = xn, so

∫ b

a
xn dx =

bn+1

n+ 1
− an+1

n+ 1
=
bn+1 − an+1

n+ 1
. (1)

In particular,
∫ b

a
x2 dx =

b3 − a3

3
.

Formula (1) is valid for any powers n for which g(x) = xn+1

n+1 is
defined on [a, b]. See Examples 3 and 4 in §28 and Exercises 29.15
and 37.5. For example,

∫ b

a

√
x dx =

∫ b

a
x1/2 dx =

2

3
[b3/2 − a3/2] for 0 ≤ a < b.

34.2 Theorem [Integration by Parts].
If u and v are continuous functions on [a, b] that are differentiable
on (a, b), and if u′ and v′ are integrable on [a, b], then

∫ b

a
u(x)v′(x) dx +

∫ b

a
u′(x)v(x) dx = u(b)v(b) − u(a)v(a). (1)

Proof
Let g = uv; then g′ = uv′+u′v by Theorem 28.3. Exercise 33.8 shows
g′ is integrable. Now Theorem 34.1 shows

∫ b

a
g′(x) dx = g(b) − g(a) = u(b)v(b) − u(a)v(a),

so (1) holds.

Note the use of Exercise 33.8 above can be avoided if u′ and v′

are continuous, which is normally the case.

Example 2
Here is a simple application of integration by parts. To calculate∫ π
0 x cosxdx, we note the integrand has the form u(x)v′(x) where
u(x) = x and v(x) = sinx. Hence
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∫ π

0

x cosx dx = u(π)v(π)−u(0)v(0)−
∫ π

0

1·sinxdx = −
∫ π

0

sin xdx = −2.

In what follows we use the convention
∫ b
a f = − ∫ a

b f for a > b.

34.3 Fundamental Theorem of Calculus II.
Let f be an integrable function on [a, b]. For x in [a, b], let

F (x) =

∫ x

a
f(t) dt.

Then F is continuous on [a, b]. If f is continuous at x0 in (a, b), then
F is differentiable at x0 and

F ′(x0) = f(x0).

Proof
Select B > 0 so that |f(x)| ≤ B for all x ∈ [a, b]. If x, y ∈ [a, b] and
|x− y| < ε

B where x < y, say, then

|F (y)−F (x)|=
∣∣∣∣
∫ y

x
f(t) dt

∣∣∣∣ ≤
∫ y

x
|f(t)| dt≤

∫ y

x
B dt=B(y−x) < ε.

This shows F is [uniformly] continuous on [a, b].
Suppose f is continuous at x0 in (a, b). Observe

F (x) − F (x0)

x− x0
=

1

x− x0

∫ x

x0

f(t) dt

for x �= x0. The trick is to observe

f(x0) =
1

x− x0

∫ x

x0

f(x0) dt,

and therefore

F (x) − f(x0)

x− x0
− f(x0) =

1

x− x0

∫ x

x0

[f(t) − f(x0)] dt. (1)

Let ε > 0. Since f is continuous at x0, there exists δ > 0 such that

t ∈ (a, b) and |t− x0| < δ imply |f(t) − f(x0)| < ε;
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see Theorem 17.2. It follows from (1) that∣∣∣∣F (x) − F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ ε

for x in (a, b) satisfying |x − x0| < δ; the cases x > x0 and x < x0
require separate arguments. We have just shown

lim
x→x0

F (x) − F (x0)

x− x0
= f(x0).

In other words, F ′(x0) = f(x0).

A useful technique of integration is known as “substitution.” A
more accurate description of the process is “change of variable.” The
technique is the reverse of the chain rule.

34.4 Theorem [Change of Variable].
Let u be a differentiable function on an open interval J such that u′

is continuous, and let I be an open interval such that u(x) ∈ I for
all x ∈ J . If f is continuous on I, then f ◦u is continuous on J and∫ b

a
f ◦ u(x)u′(x) dx =

∫ u(b)

u(a)
f(u) du (1)

for a, b in J .

Note u(a) need not be less than u(b), even if a < b.

Proof
The continuity of f ◦u follows from Theorem 17.5. Fix c in I and let
F (u) =

∫ u
c f(t) dt. Then F ′(u) = f(u) for all u ∈ I by Theorem 34.3.

Let g = F ◦ u. By the Chain Rule 28.4, we have

g′(x) = F ′(u(x)) · u′(x) = f(u(x)) · u′(x),

so by Theorem 34.1∫ b

a
f ◦ u(x)u′(x) dx =

∫ b

a
g′(x) dx= g(b) − g(a) =F (u(b)) − F (u(a))

=

∫ u(b)

c
f(t) dt −

∫ u(a)

c
f(t) dt =

∫ u(b)

u(a)
f(t) dt.

This proves (1).
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Example 3
Let g be a one-to-one differentiable function on an open interval I.
Then J = g(I) is an open interval, and the inverse function g−1 is
differentiable on J by Theorem 29.9. We show∫ b

a
g(x) dx +

∫ g(b)

g(a)
g−1(u) du = b · g(b) − a · g(a) (1)

for a, b in I.
We put f = g−1 and u = g in the change of variable formula to

obtain ∫ b

a
g−1 ◦ g(x)g′(x) dx =

∫ g(b)

g(a)
g−1(u) du.

Since g−1 ◦ g(x) = x for x in I, we obtain
∫ g(b)

g(a)
g−1(u) du =

∫ b

a
xg′(x) dx.

Now integrate by parts with u(x) = x and v(x) = g(x):
∫ g(b)

g(a)
g−1(u) du = b · g(b) − a · g(a) −

∫ b

a
g(x) dx.

This is formula (1).

Exercises

34.1 Use Theorem 34.3 to prove Theorem 34.1 for the case g′ is continuous.
Hint : Let F (x) =

∫ x

a g
′; then F ′ = g′. Apply Corollary 29.5.

34.2 Calculate
(a) limx→0

1
x

∫ x

0
et

2

dt (b) limh→0
1
h

∫ 3+h

3
et

2

dt.

34.3 Let f be defined as follows: f(t) = 0 for t < 0; f(t) = t for 0 ≤ t ≤ 1;
f(t) = 4 for t > 1.

(a) Determine the function F (x) =
∫ x

0
f(t) dt.

(b) Sketch F . Where is F continuous?

(c) Where is F differentiable? Calculate F ′ at the points of
differentiability.
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34.4 Repeat Exercise 34.3 for f where f(t) = t for t < 0; f(t) = t2 + 1 for
0 ≤ t ≤ 2; f(t) = 0 for t > 2.

34.5 Let f be a continuous function on R and define

F (x) =

∫ x+1

x−1

f(t) dt for x ∈ R.

Show F is differentiable on R and compute F ′.

34.6 Let f be a continuous function on R and define

G(x) =

∫ sin x

0

f(t) dt for x ∈ R.

Show G is differentiable on R and compute G′.

34.7 Use change of variables to integrate
∫ 1

0
x
√

1 − x2 dx.

34.8 (a) Use integration by parts to evaluate

∫ 1

0

x arctanxdx.

Hint : Let u(x) = arctanx, so that u′(x) = 1
1+x2 .

(b) If you used v(x) = x2

2 in part (a), do the computation again

with v(x) = x2+1
2 . This interesting example is taken from J.L.

Borman [10].

34.9 Use Example 3 to show
∫ 1/2

0
arcsinxdx = π

12 +
√
3
2 − 1.

34.10 Let g be a strictly increasing continuous function mapping [0, 1] onto

[0, 1]. Give a geometric argument showing
∫ 1

0 g(x)dx+
∫ 1

0 g
−1(u)du= 1.

34.11 Suppose f is a continuous function on [a, b]. Show that if
∫ b

a
f(x)2dx

= 0, then f(x) = 0 for all x in [a, b]. Hint : See Theorem 33.4.

34.12 Show that if f is a continuous real-valued function on [a, b] satisfying∫ b

a
f(x)g(x) dx = 0 for every continuous function g on [a, b], then

f(x) = 0 for all x in [a, b].


