
Practical Foundations for

Programming Languages

Second Edition

Robert Harper
Carnegie Mellon University



Contents

Preface to the Second Edition page xv
Preface to the First Edition xvii

Part I Judgments and Rules

1 Abstract Syntax 3
1.1 Abstract Syntax Trees 3
1.2 Abstract Binding Trees 6
1.3 Notes 10

2 Inductive Definitions 12
2.1 Judgments 12
2.2 Inference Rules 12
2.3 Derivations 14
2.4 Rule Induction 15
2.5 Iterated and Simultaneous Inductive Definitions 17
2.6 Defining Functions by Rules 18
2.7 Notes 19

3 Hypothetical and General Judgments 21
3.1 Hypothetical Judgments 21
3.2 Hypothetical Inductive Definitions 24
3.3 General Judgments 26
3.4 Generic Inductive Definitions 27
3.5 Notes 28

Part II Statics and Dynamics

4 Statics 33
4.1 Syntax 33
4.2 Type System 34
4.3 Structural Properties 35
4.4 Notes 37



vi Contents

5 Dynamics 39
5.1 Transition Systems 39
5.2 Structural Dynamics 40
5.3 Contextual Dynamics 42
5.4 Equational Dynamics 44
5.5 Notes 46

6 Type Safety 48
6.1 Preservation 48
6.2 Progress 49
6.3 Run-Time Errors 50
6.4 Notes 52

7 Evaluation Dynamics 53
7.1 Evaluation Dynamics 53
7.2 Relating Structural and Evaluation Dynamics 54
7.3 Type Safety, Revisited 55
7.4 Cost Dynamics 56
7.5 Notes 57

Part III Total Functions

8 Function Definitions and Values 61
8.1 First-Order Functions 61
8.2 Higher-Order Functions 62
8.3 Evaluation Dynamics and Definitional Equality 65
8.4 Dynamic Scope 66
8.5 Notes 67

9 System T of Higher-Order Recursion 69
9.1 Statics 69
9.2 Dynamics 70
9.3 Definability 71
9.4 Undefinability 73
9.5 Notes 75

Part IV Finite Data Types

10 Product Types 79
10.1 Nullary and Binary Products 79
10.2 Finite Products 81
10.3 Primitive Mutual Recursion 82
10.4 Notes 83



vii Contents

11 Sum Types 85
11.1 Nullary and Binary Sums 85
11.2 Finite Sums 86
11.3 Applications of Sum Types 88
11.4 Notes 91

Part V Types and Propositions

12 Constructive Logic 95
12.1 Constructive Semantics 95
12.2 Constructive Logic 96
12.3 Proof Dynamics 100
12.4 Propositions as Types 101
12.5 Notes 101

13 Classical Logic 104
13.1 Classical Logic 105
13.2 Deriving Elimination Forms 109
13.3 Proof Dynamics 110
13.4 Law of the Excluded Middle 111
13.5 The Double-Negation Translation 113
13.6 Notes 114

Part VI Infinite Data Types

14 Generic Programming 119
14.1 Introduction 119
14.2 Polynomial Type Operators 119
14.3 Positive Type Operators 122
14.4 Notes 123

15 Inductive and Coinductive Types 125
15.1 Motivating Examples 125
15.2 Statics 128
15.3 Dynamics 130
15.4 Solving Type Equations 131
15.5 Notes 132

Part VII Variable Types

16 System F of Polymorphic Types 137
16.1 Polymorphic Abstraction 137
16.2 Polymorphic Definability 140
16.3 Parametricity Overview 142
16.4 Notes 144



viii Contents

17 Abstract Types 146
17.1 Existential Types 146
17.2 Data Abstraction 149
17.3 Definability of Existential Types 150
17.4 Representation Independence 151
17.5 Notes 153

18 Higher Kinds 154
18.1 Constructors and Kinds 155
18.2 Constructor Equality 156
18.3 Expressions and Types 157
18.4 Notes 158

Part VIII Partiality and Recursive Types

19 System PCF of Recursive Functions 161
19.1 Statics 162
19.2 Dynamics 163
19.3 Definability 165
19.4 Finite and Infinite Data Structures 167
19.5 Totality and Partiality 167
19.6 Notes 169

20 System FPC of Recursive Types 171
20.1 Solving Type Equations 171
20.2 Inductive and Coinductive Types 172
20.3 Self-Reference 174
20.4 The Origin of State 176
20.5 Notes 177

Part IX Dynamic Types

21 The Untyped λ-Calculus 181
21.1 The λ-Calculus 181
21.2 Definability 182
21.3 Scott’s Theorem 184
21.4 Untyped Means Uni-Typed 186
21.5 Notes 187

22 Dynamic Typing 189
22.1 Dynamically Typed PCF 189
22.2 Variations and Extensions 192
22.3 Critique of Dynamic Typing 194
22.4 Notes 195



1 Abstract Syntax

Programming languages express computations in a form comprehensible to both people
and machines. The syntax of a language specifies how various sorts of phrases (expressions,
commands, declarations, and so forth) may be combined to form programs. But what are
these phrases? What is a program made of?

The informal concept of syntax involves several distinct concepts. The surface, or con-
crete, syntax is concerned with how phrases are entered and displayed on a computer. The
surface syntax is usually thought of as given by strings of characters from some alphabet
(say, ASCII or Unicode). The structural, or abstract, syntax is concerned with the structure
of phrases, specifically how they are composed from other phrases. At this level, a phrase
is a tree, called an abstract syntax tree, whose nodes are operators that combine several
phrases to form another phrase. The binding structure of syntax is concerned with the
introduction and use of identifiers: how they are declared, and how declared identifiers can
be used. At this level, phrases are abstract binding trees, which enrich abstract syntax trees
with the concepts of binding and scope.

We will not concern ourselves in this book with concrete syntax but will instead consider
pieces of syntax to be finite trees augmented with a means of expressing the binding and
scope of identifiers within a syntax tree. To prepare the ground for the rest of the book, we
define in this chapter what is a “piece of syntax” in two stages. First, we define abstract
syntax trees, or ast’s, which capture the hierarchical structure of a piece of syntax, while
avoiding commitment to their concrete representation as a string. Second, we augment
abstract syntax trees with the means of specifying the binding (declaration) and scope
(range of significance) of an identifier. Such enriched forms of abstract syntax are called
abstract binding trees, or abt’s for short.

Several functions and relations on abt’s are defined that give precise meaning to the
informal ideas of binding and scope of identifiers. The concepts are infamously difficult to
define properly and are the mother lode of bugs for language implementors. Consequently,
precise definitions are essential, but they are also fairly technical and take some getting
used to. It is probably best to skim this chapter on first reading to get the main ideas, and
return to it for clarification as necessary.

1.1 Abstract Syntax Trees

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables, and
whose interior nodes are operators whose arguments are its children. Ast’s are classified



4 Abstract Syntax

into a variety of sorts corresponding to different forms of syntax. A variable stands for an
unspecified, or generic, piece of syntax of a specified sort. Ast’s can be combined by an
operator, which has an arity specifying the sort of the operator and the number and sorts
of its arguments. An operator of sort s and arity s1, . . . , sn combines n ≥ 0 ast’s of sort
s1, . . . , sn, respectively, into a compound ast of sort s.

The concept of a variable is central and therefore deserves special emphasis. A variable
is an unknown object drawn from some domain. The unknown can become known by
substitution of a particular object for all occurrences of a variable in a formula, thereby
specializing a general formula to a particular instance. For example, in school algebra
variables range over real numbers, and we may form polynomials, such as x2 + 2 x + 1,
that can be specialized by substitution of, say, 7 for x to obtain 72+ (2× 7)+ 1, which can
be simplified according to the laws of arithmetic to obtain 64, which is (7+ 1)2.

Abstract syntax trees are classified by sorts that divide ast’s into syntactic categories.
For example, familiar programming languages often have a syntactic distinction between
expressions and commands; these are two sorts of abstract syntax trees. Variables in abstract
syntax trees range over sorts in the sense that only ast’s of the specified sort of the variable
can be plugged in for that variable. Thus, it would make no sense to replace an expression
variable by a command, nor a command variable by an expression, the two being different
sorts of things. But the core idea carries over from school mathematics, namely that a
variable is an unknown, or a place-holder, whose meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers,
addition, and multiplication. The abstract syntax of such a language consists of a single
sort Exp generated by these operators:

1. An operator num[n] of sort Exp for each n ∈ N.
2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2+ (3× x), which involves a variable, x, would be represented by the ast

plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast
of sort Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2+ (3× 4). We may, of course, plug in more complex ast’s
of sort Exp for x to obtain other ast’s as result.

The tree structure of ast’s provides a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which a can be generated
and show that the property holds in each case under the assumption that it holds for its
constituent ast’s (if any). So, in the case of the sort Exp just described, we must show

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num[n]: for every n ∈ N, prove that P(num[n]).



5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for a1 and a2, prove that it holds for plus(a1; a2) and
times(a1; a2): if P(a1) and P(a2), then P(plus(a1; a2)) and P(times(a1; a2)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x1, . . . , xk , and
Q holds of each xi , then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s a under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which Q holds, then Q will hold for the result of replacing x by b

in a.
For the sake of precision, we now give precise definitions of these concepts. Let S be

a finite set of sorts. For a given set S of sorts, an arity has the form (s1, . . . , sn)s, which
specifies the sort s ∈ S of an operator taking n ≥ 0 arguments, each of sort si ∈ S. Let
O = {Oα } be an arity-indexed family of disjoint sets of operators Oα of arity α. If o is
an operator of arity (s1, . . . , sn)s, we say that o has sort s and has n arguments of sorts
s1, . . . , sn.

Fix a set S of sorts and an arity-indexed family O of sets of operators of each arity. Let
X = {Xs }s∈S be a sort-indexed family of disjoint finite sets Xs of variables x of sort s.
When X is clear from context, we say that a variable x is of sort s if x ∈ Xs , and we say
that x is fresh for X , or just fresh when X is understood, if x /∈ Xs for any sort s. If x is
fresh for X and s is a sort, then X , x is the family of sets of variables obtained by adding
x to Xs . The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The familyA[X ] = {A[X ]s }s∈S of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x ∈ Xs , then x ∈ A[X ]s .
2. Operators combine ast’s: if o is an operator of arity (s1, . . . , sn)s, and if a1 ∈ A[X ]s1 ,

. . . , an ∈ A[X ]sn
, then o(a1; . . . ;an) ∈ A[X ]s .

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a ∈ A[X ], it is
enough to show:

1. If x ∈ Xs , then Ps(x).
2. If o has arity (s1, . . . , sn)s and Ps1 (a1) and . . . and Psn

(an), then Ps(o(a1; . . . ;an)).



6 Abstract Syntax

For example, it is easy to prove by structural induction that A[X ] ⊆ A[Y] whenever
X ⊆ Y .

Variables are given meaning by substitution. If a ∈ A[X , x]s ′ , and b ∈ A[X ]s , then
[b/x]a ∈ A[X ]s ′ is the result of substituting b for every occurrence of x in a. The ast a is
called the target, and x is called the subject, of the substitution. Substitution is defined by
the following equations:

1. [b/x]x = b and [b/x]y = y if x �= y.
2. [b/x]o(a1; . . . ;an) = o([b/x]a1; . . . ;[b/x]an).

For example, we may check that

[num[2]/x]plus(x; num[3]) = plus(num[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. If a ∈ A[X , x], then for every b ∈ A[X ] there exists a unique c ∈ A[X ]
such that [b/x]a = c

Proof By structural induction on a. If a = x, then c = b by definition; otherwise, if
a = y �= x, then c = y, also by definition. Otherwise, a = o(a1, . . . , an), and we have
by induction unique c1, . . . , cn such that [b/x]a1 = c1 and . . . [b/x]an = cn, and so c is
c = o(c1; . . . ;cn), by definition of substitution.

1.2 Abstract Binding Trees

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and
symbols, called a binding, with a specified range of significance, called its scope. The scope
of a binding is an abt within which the bound identifier can be used, either as a place-holder
(in the case of a variable declaration) or as the index of some operator (in the case of a
symbol declaration). Thus, the set of active identifiers can be larger within a subtree of
an abt than it is within the surrounding tree. Moreover, different subtrees may introduce
identifiers with disjoint scopes. The crucial principle is that any use of an identifier should
be understood as a reference, or abstract pointer, to its binding. One consequence is that
the choice of identifiers is immaterial, so long as we can always associate a unique binding
with each use of an identifier.

As a motivating example, consider the expression let x be a1 in a2, which introduces
a variable x for use within the expression a2 to stand for the expression a1. The variable
x is bound by the let expression for use within a2; any use of x within a1 refers to a
different variable that happens to have the same name. For example, in the expression
let x be 7 in x + x occurrences of x in the addition refer to the variable introduced by the
let. On the other hand, in the expression let x be x ∗ x in x + x, occurrences of x within
the multiplication refer to a different variable than those occurring within the addition. The



7 1.2 Abstract Binding Trees

latter occurrences refer to the binding introduced by the let, whereas the former refer to
some outer binding not displayed here.

The names of bound variables are immaterial insofar as they determine the same
binding. So, for example, let x be x ∗ x in x + x could just as well have been written
let y be x ∗ x in y + y, without changing its meaning. In the former case, the variable x

is bound within the addition, and in the latter, it is the variable y, but the “pointer structure”
remains the same. On the other hand, the expression let x be y ∗ y in x + x has a different
meaning to these two expressions, because now the variable y within the multiplication
refers to a different surrounding variable. Renaming of bound variables is constrained to
the extent that it must not alter the reference structure of the expression. For example, the
expression

let x be 2 in let y be 3 in x + x

has a different meaning than the expression

let y be 2 in let y be 3 in y + y,

because the y in the expression y + y in the second case refers to the inner declaration, not
the outer one as before.

The concept of an ast can be enriched to account for binding and scope of a variable.
These enriched ast’s are called abstract binding trees, or abt’s for short. Abt’s generalize
ast’s by allowing an operator to bind any finite number (possibly zero) of variables in each
argument. An argument to an operator is called an abstractor and has the form x1, . . . , xk.a.
The sequence of variables x1, . . . , xk are bound within the abt a. (When k is zero, we elide
the distinction between .a and a itself.) Written in the form of an abt, the expression
let x be a1 in a2 has the form let(a1; x.a2), which more clearly specifies that the variable
x is bound within a2, and not within a1. We often write �x to stand for a finite sequence
x1, . . . , xn of distinct variables and write �x.a to mean x1, . . . , xn.a.

To account for binding, operators are assigned generalized arities of the form
(υ1, . . . , υn)s, which specifies operators of sort s with n arguments of valence υ1, . . . , υn.
In general a valence υ has the form s1, . . . , sk.s, which specifies the sort of an argument as
well as the number and sorts of the variables bound within it. We say that a sequence �x of
variables is of sort �s to mean that the two sequences have the same length k and that the
variable xi is of sort si for each 1 ≤ i ≤ k.

Thus, to specify that the operator let has arity (Exp, Exp.Exp)Exp indicates that it is
of sort Exp whose first argument is of sort Exp and binds no variables and whose second
argument is also of sort Exp and within which is bound one variable of sort Exp. The
informal expression let x be 2+ 2 in x × x may then be written as the abt

let(plus(num[2]; num[2]); x.times(x; x))

in which the operator let has two arguments, the first of which is an expression, and the
second of which is an abstractor that binds one expression variable.

Fix a setS of sorts and a familyO of disjoint sets of operators indexed by their generalized
arities. For a given family of disjoint sets of variables X , the family of abstract binding



8 Abstract Syntax

trees, or abt’s B[X ], is defined similarly to A[X ], except that X is not fixed throughout the
definition but rather changes as we enter the scopes of abstractors.

This simple idea is surprisingly hard to make precise. A first attempt at the definition is
as the least family of sets closed under the following conditions:

1. If x ∈ Xs , then x ∈ B[X ]s .
2. For each operator o of arity (�s1.s1, . . . , �sn.sn)s, if a1 ∈ B[X , �x1]s1 , . . . , and an ∈

B[X , �xn]sn
, then o(�x1.a1; . . . ;�xn.an) ∈ B[X ]s .

The bound variables are adjoined to the set of active variables within each argument, with
the sort of each variable determined by the valence of the operator.

This definition is almost correct but fails to properly account for renaming of bound vari-
ables. An abt of the form let(a1; x.let(a2; x.a3)) is ill-formed according to this definition,
because the first binding adds x to X , which implies that the second cannot also add x to
X , x, because it is not fresh for X , x. The solution is to ensure that each of the arguments
is well-formed regardless of the choice of bound variable names, which is achieved using
fresh renamings, which are bijections between sequences of variables. Specifically, a fresh
renaming (relative to X ) of a finite sequence of variables �x is a bijection ρ : �x ↔ �x ′
between �x and �x ′, where �x ′ is fresh for X . We write ρ̂(a) for the result of replacing each
occurrence of xi in a by ρ(xi), its fresh counterpart.

This is achieved by altering the second clause of the definition of abt’s using fresh
renamings as follows:

For each operator o of arity (�s1.s1, . . . , �sn.sn)s, if for each 1 ≤ i ≤ n and each fresh
renaming ρi : �xi ↔ �x ′i , we have ρ̂i(ai) ∈ B[X , �x ′i], then o(�x1.a1; . . . ;�xn.an) ∈ B[X ]s .

The renaming ρ̂i(ai) of each ai ensures that collisions cannot occur and that the abt is valid
for almost all renamings of any bound variables that occur within it.

The principle of structural induction extends to abt’s and is called structural induction
modulo fresh renaming. It states that to show that P[X ](a) holds for every a ∈ B[X ], it is
enough to show the following:

1. if x ∈ Xs , then P[X ]s(x).
2. For every o of arity (�s1.s1, . . . , �sn.sn)s, if for each 1 ≤ i ≤ n, P[X , �x ′i]si

(ρ̂i(ai)) holds
for every ρi : �xi ↔ �x ′i with �x ′i /∈ X , then P[X ]s(o(�x1.a1; . . . ;�xn.an)).

The second condition ensures that the inductive hypothesis holds for all fresh choices of
bound variable names, and not just the ones actually given in the abt.

As an example let us define the judgment x ∈ a, where a ∈ B[X , x], to mean that x

occurs free in a. Informally, this means that x is bound somewhere outside of a, rather
than within a itself. If x is bound within a, then those occurrences of x are different
from those occurring outside the binding. The following definition ensures that this is the
case:



9 1.2 Abstract Binding Trees

1. x ∈ x.
2. x ∈ o(�x1.a1; . . . ;�xn.an) if there exists 1 ≤ i ≤ n such that for every fresh renaming

ρ : �xi ↔ �zi we have x ∈ ρ̂(ai).

The first condition states that x is free in x but not free in y for any variable y other than x.
The second condition states that if x is free in some argument, independently of the choice
of bound variable names in that argument, then it is free in the overall abt.

The relation a =α b of α-equivalence (so-called for historical reasons) means that a and
b are identical up to the choice of bound variable names. The α-equivalence relation is the
strongest congruence containing the following two conditions:

1. x =α x.
2. o(�x1.a1; . . . ;�xn.an) =α o(�x ′1.a′1; . . . ;�x ′n.a′n) if for every 1 ≤ i ≤ n, ρ̂i(ai) =α ρ̂ ′i(a

′
i) for

all fresh renamings ρi : �xi ↔ �zi and ρ ′i : �x ′i ↔ �zi .

The idea is that we rename �xi and �x ′i consistently, avoiding confusion, and check that ai

and a′i are α-equivalent. If a =α b, then a and b are α-variants of each other.
Some care is required in the definition of substitution of an abt b of sort s for free

occurrences of a variable x of sort s in some abt a of some sort, written [b/x]a. Substitution
is partially defined by the following conditions:

1. [b/x]x = b, and [b/x]y = y if x �= y.
2. [b/x]o(�x1.a1; . . . ;�xn.an) = o(�x1.a

′
1; . . . ;�xn.a

′
n), where, for each 1 ≤ i ≤ n, we require

that �xi /∈ b, and we set a′i = [b/x]ai if x /∈ �xi , and a′i = ai otherwise.

The definition of [b/x]a is quite delicate and merits careful consideration.
One trouble spot for substitution is to notice that if x is bound by an abstractor within

a, then x does not occur free within the abstractor and hence is unchanged by substitution.
For example, [b/x]let(a1; x.a2) = let([b/x]a1; x.a2), there being no free occurrences of
x in x.a2. Another trouble spot is the capture of a free variable of b during substitution.
For example, if y ∈ b and x �= y, then [b/x]let(a1; y.a2) is undefined, rather than
being let([b/x]a1; y.[b/x]a2), as one might at first suspect. For example, provided that
x �= y, [y/x]let(num[0]; y.plus(x; y)) is undefined, not let(num[0]; y.plus(y; y)), which
confuses two different variables named y.

Although capture avoidance is an essential characteristic of substitution, it is, in a sense,
merely a technical nuisance. If the names of bound variables have no significance, then
capture can always be avoided by first renaming the bound variables in a to avoid any
free variables in b. In the foregoing example, if we rename the bound variable y to
y ′ to obtain a′ � let(num[0]; y ′.plus(x; y ′)), then [b/x]a′ is defined and is equal to
let(num[0]; y ′.plus(b; y ′)). The price for avoiding capture in this way is that substitution
is only determined up to α-equivalence, and so we may no longer think of substitution as a
function but only as a proper relation.



10 Abstract Syntax

To restore the functional character of substitution, it is sufficient to adopt the identification
convention, which is stated as follows:

Abstract binding trees are always identified up to α-equivalence.

That is, α-equivalent abt’s are regarded as identical. Substitution can be extended to α-
equivalence classes of abt’s to avoid capture by choosing representatives of the equivalence
classes of b and a in such a way that substitution is defined, then forming the equiv-
alence class of the result. Any two choices of representatives for which substitution is
defined gives α-equivalent results, so that substitution becomes a well-defined total func-
tion. We will adopt the identification convention for abt’s throughout this book.

It will often be necessary to consider languages whose abstract syntax cannot be specified
by a fixed set of operators but rather requires that the available operators be sensitive to the
context in which they occur. For our purposes, it will suffice to consider a set of symbolic
parameters, or symbols, that index families of operators so that as the set of symbols varies,
so does the set of operators. An indexed operator o is a family of operators indexed by
symbols u, so that o[u] is an operator when u is an available symbol. If U is a finite set of
symbols, thenB[U ;X ] is the sort-indexed family of abt’s that are generated by operators and
variables as before, admitting all indexed operator instances by symbols u ∈ U . Whereas
a variable is a place-holder that stands for an unknown abt of its sort, a symbol does not
stand for anything, and is not, itself, an abt. The only significance of symbol is whether it
is the same as or differs from another symbol; the operator instances o[u] and o[u′] are the
same exactly when u is u′ and are the same symbol.

The set of symbols is extended by introducing a new, or fresh, symbol within a scope
using the abstractor u.a, which binds the symbol u within the abt a. An abstracted symbol
is “new” in the same sense as for an abstracted variable: the name of the bound symbol
can be varied at will provided that no conflicts arise. This renaming property ensures that
an abstracted symbol is distinct from all others in scope. The only difference between
symbols and variables is that the only operation on symbols is renaming; there is no notion
of substitution for a symbol.

Finally, a word about notation: to help improve the readability we often “group” and
“stage” the arguments to an operator, using round brackets and braces to show grouping, and
generally regarding stages to progress from right to left. All arguments in a group are consid-
ered to occur at the same stage, though their order is significant, and successive groups are
considered to occur in sequential stages. Staging and grouping is often a helpful mnemonic
device, but has no fundamental significance. For example, the abt o{a1; a2}(a3; x.a4) is
the same as the abt o(a1; a2; a3; x.a4), as would be any other order-preserving grouping or
staging of its arguments.

1.3 Notes

The concept of abstract syntax has its origins in the pioneering work of Church, Turing,
and Gödel, who first considered writing programs that act on representations of programs.



11 Exercises

Originally, programs were represented by natural numbers, using encodings, now called
Gödel-numberings, based on the prime factorization theorem. Any standard text on mathe-
matical logic, such as Kleene (1952), has a thorough account of such representations. The
Lisp language (McCarthy, 1965; Allen, 1978) introduced a much more practical and direct
representation of syntax as symbolic expressions. These ideas were developed further in the
language ML (Gordon et al., 1979), which featured a type system capable of expressing
abstract syntax trees. The AUTOMATH project (Nederpelt et al., 1994) introduced the
idea of using Church’s λ notation (Church, 1941) to account for the binding and scope of
variables. These ideas were developed further in LF (Harper et al., 1993).

The concept of abstract binding trees presented here was inspired by the system of
notation developed in the NuPRL Project, which is described in Constable (1986) and
from Martin-Löf’s system of arities, which is described in Nordstrom et al. (1990). Their
enrichment with symbol binders is influenced by Pitts and Stark (1993).

Exercises

1.1. Prove by structural induction on abstract syntax trees that if X ⊆ Y , then A[X ] ⊆
A[Y].

1.2. Prove by structural induction modulo renaming on abstract binding trees that ifX ⊆ Y ,
then B[X ] ⊆ B[Y].

1.3. Show that if a =α a′ and b =α b′ and both [b/x]a and [b′/x]a′ are defined, then
[b/x]a =α [b′/x]a′.

1.4. Bound variables can be seen as the formal analogs of pronouns in natural languages.
The binding occurrence of a variable at an abstractor fixes a “fresh” pronoun for use
within its body that refers unambiguously to that variable (in contrast to English, in
which the referent of a pronoun can often be ambiguous). This observation suggests an
alternative representation of abt’s, called abstract binding graphs, or abg’s for short,
as directed graphs constructed as follows:
(a) Free variables are atomic nodes with no outgoing edges.
(b) Operators with n arguments are n-ary nodes, with one outgoing edge directed at

each of their children.
(c) Abstractors are nodes with one edge directed to the scope of the abstracted variable.
(d) Bound variables are back edges directed at the abstractor that introduced it.
Notice that ast’s, thought of as abt’s with no abstractors, are acyclic directed graphs
(more precisely, variadic trees), whereas general abt’s can be cyclic. Draw a few
examples of abg’s corresponding to the example abt’s given in this chapter. Give a
precise definition of the sort-indexed family G[X ] of abstract binding graphs. What
representation would you use for bound variables (back edges)?


